Honors	Trigonometry
--------	--------------

Copy original problem.

Per

Date

Convince *me* that **you** understand the concept!

No Calculators, of course.

Chapter 7 Exam

Given z_1 and z_2 find: $z_1 + z_2$, $z_1 \cdot z_2$, and $\frac{z_1}{z_1}$. I

Write your answers in cartesian coordinate form [ie. (a,b)] where a and b are real numbers.

(tot 30 pts)

A)
$$z_1 = -3 + 2i$$
 B) $z_1 = 4 + \sqrt{-18}$ C) $z_1 = (6, -2)$

B)
$$z_1 = 4 + \sqrt{-18}$$

C)
$$z_1 = (6, -2)$$

D)
$$z_1 = 2 \operatorname{cis} 210^{\circ}$$

$$z_2 = 4 - 5i$$

$$z_2 = 4 - 5i$$
 $z_2 = 5 - \sqrt{-8}$ $z_3 = (-3, 4)$

$$z_2 = (-3, 4)$$

$$z_2 = 3 \operatorname{cis} 300^{\circ}$$

Given z_1 and z_2 find: $z_1 \cdot z_2$, and $\frac{z_1}{z_2}$. II

(tot 20 pts)

Write your final answer in the form of: $\rho \operatorname{cis} \theta$; $(0 \le \theta < 360 ; \rho \ge 0)$

A)
$$z_1 = -1 + i$$
 B) $z_1 = 4 - 4i$ C) $z_1 = 5 \operatorname{cis} 150^{\circ}$ D) $z_1 = 4 \operatorname{cis} 30^{\circ}$

B)
$$z_1 = 4 - 4$$

C)
$$z_1 = 5 \text{ cis } 150^\circ$$

D)
$$z_1 = 4 \cos 30^{\circ}$$

$$z_2 = -2 + 2i \qquad \qquad z_2 = -2i$$

$$z_{2} = -2i$$

$$z_2 = 5(1-i)$$

$$z_2 = 5(1-i)$$
 $z_2 = 8 \operatorname{cis} 60^\circ$

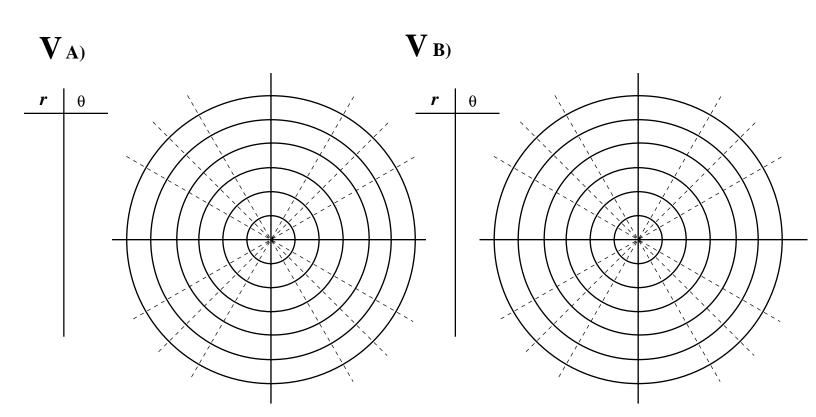
Express: $\left(\frac{3\sqrt{3}}{2} - \frac{3i}{2}\right)^{-5}$ in the form of a + biIII

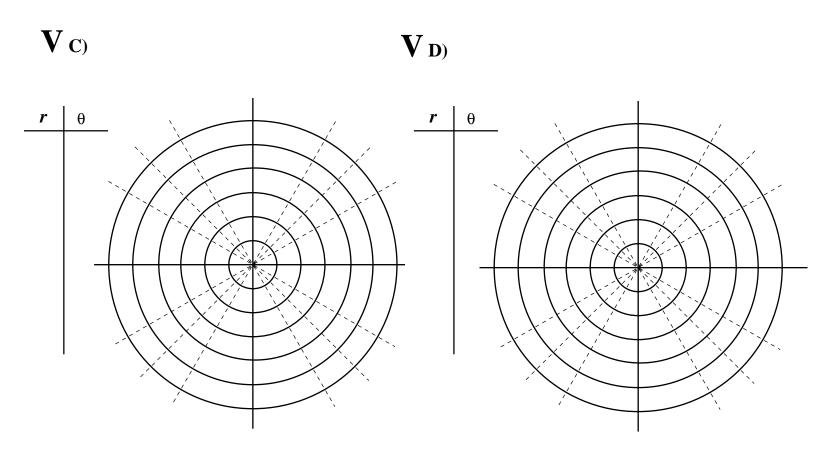
(5 pts)

IV Find the four fourth roots of i. Write your answers in $\rho \operatorname{cis} \theta$; $(0 \le \theta < 360 ; \rho \ge 0)$ (5 pts)

 ${f V}$ Fill in the table with at least 5 values each and sketch in the areas provided on the back side of this paper. Rewrite each equation in cartesian form. (10 pts ea)

A)
$$\rho = 4 - 4\sin\theta$$
 B) $\rho = 4\cos\theta$ C) $\rho = \frac{-2}{\cos\theta}$ D) $\rho = 2\sin 2\theta$


B)
$$\rho = 4 \cos \theta$$


C)
$$\rho = \frac{-2}{\cos \theta}$$

D)
$$\rho = 2 \sin 2\theta$$

Extra Credit · · · · 5 pts

A train goes from Sacramento to Fresno averaging forty km/h and returns averaging sixty km/h. Assuming no time is lost turning around, what is the average speed for the round trip?

