Convince me that you understand the concept!

No Calculators!

Chapter 7 Exam

I Given z_1 and z_2 find: $z_1 + z_2$, $z_1 \cdot z_2$, and $\frac{z_1}{z_2}$. (3 pts ea part; total 36 pts)

Write your answers in cartesian coordinate form [ie. (a,b)] where a and b are real numbers.

a)
$$z_1 = 2 + 3i$$
 b) $z_1 = -5 + \sqrt{-16}$ c) $z_1 = (4, 5)$ d) $z_1 = 2 \text{ cis } 120^\circ$
 $z_2 = 3 - 4i$ $z_2 = 4 - \sqrt{-36}$ $z_2 = (-3, 2)$ $z_2 = -3 \text{ cis } 30^\circ$

II Given z_1 and z_2 find: $z_1 \cdot z_2$, and $\frac{z_1}{z_2}$ (tot 24 pts)

Write your final answer in the form of: ρ cis θ ; $(0 \le \theta < 360 ; \rho \ge 0)$

a)
$$z_1 = 2 - 2i$$
 b) $z_1 = (0, -2)$ c) $z_1 = 4 - 4i$ d) $z_1 = 3 \operatorname{cis} 30^\circ$ $z_2 = -1 + i$ $z_2 = (4, -4)$ $z_2 = 4\sqrt{2} \operatorname{cis} 135^\circ$ $z_3 = 6 \operatorname{cis} 45^\circ$

III Express: $\left(\frac{3\sqrt{3}}{2} - \frac{3}{2}i\right)^{-4}$ in the form of a + bi (10 pts)

IV Convert: (5 pts ea)

a)
$$(x + 3)^2 + (y - 1)^2 = 10$$
 to polar form b) $\rho = \frac{6}{2 \cos \theta - 3 \sin \theta}$ to cartesian form

 \mathbf{V} Sketch the following equations on the axes provided on the opposite side of this paper. (5 pts ea)

a)
$$\rho = 3 \sin \theta$$
 b) $\rho = -2$ c) $\theta = \frac{11}{12} \pi$ d) $\rho = \frac{\theta}{180}$

Given: $\sin x = 3 \cos x$ and $\sin x \cos x = k$. Solve for k. (hint: k is a positive number less than 2.)

 $\mathbf{V}_{A)}$

 $\mathbf{V}_{B)}$

 $\mathbf{V}_{\mathbf{C}}$

 $\mathbf{V}_{\mathbf{D})}$

