Convince *me* that **you** understand the concept!

You may use a calculator in section V only.

Chapter 7 Exam

Given z_1 and z_2 find: $z_1 + z_2$, $z_1 \cdot z_2$, and $\frac{z_1}{z_2}$. Ι

Write your answers in cartesian coordinate form [ie. (a,b)] where a and b are real numbers.

(3 pts ea part; total 36 pts)

A)
$$z_1 = 5 + 3i$$

A)
$$z_1 = 5 + 3i$$
 B) $z_1 = 4 + \sqrt{-4}$ C) $z_1 = (6,-2)$

C)
$$z_1 = (6, -2)$$

D)
$$z_1 = 2 \operatorname{cis} 30^{\circ}$$

$$z_2 = 3 + 2i$$

$$z_2 = 3 + 2i$$
 $z_2 = 5 - \sqrt{-36}$ $z_2 = (3,4)$

$$z_2 = (3,4)$$

$$z_2 = 3 \operatorname{cis} 60^{\circ}$$

Given z_1 and z_2 find: $z_1 \cdot z_2$, and $\frac{z_1}{z_2}$. II

(tot 24 pts)

Write your final answer in the form of: $\rho \operatorname{cis} \theta$; $(0 \le \theta < 360 ; \rho \ge 0)$

A)
$$z_1 = -1 + i$$

B)
$$z_1 = 4 - 4$$

A)
$$z_1 = -1 + i$$
 B) $z_1 = 4 - 4i$ C) $z_1 = 5\sqrt{2} \operatorname{cis} 45^{\circ}$ D) $z_1 = 4 \operatorname{cis} 270^{\circ}$ $z_2 = -2 + 2i$ $z_2 = 5(1 + i)$ $z_2 = 4 \operatorname{cis} 90^{\circ}$

D)
$$z_1 = 4 \operatorname{cis} 270^{\circ}$$

$$z_2 = 5(1+i)$$

$$z_2 = 4 \operatorname{cis} 90$$

Express: $\left(\frac{3\sqrt{3}}{2} + \frac{3i}{2}\right)^{-6}$ in the form of a + biIII

(10 pts)

IV Find the four fourth roots of i. Write your answers in $\rho \operatorname{cis}\theta$; $(0 \le \theta < 360 ; \rho \ge 0)$

(10 pts)

 ${f V}$ Sketch the following equations on the axes provided on the opposite side of this paper. Mark 2 points (which are **not on any axis**) for *each* equation and give the coordinate in both cartesian and polar form.

(5 pts ea)

- A) $\rho = 3(1 + \cos \theta)$ B) $\rho = 4\sin \theta$ C) $\rho = \frac{2}{\cos \theta}$ D) $\sin \theta = \frac{3}{\rho}$

Extra Credit ······ 5 pts ·····

Compute the number of degrees in the smallest positive angle θ such that:

 $8\sin\theta\cos^5\theta - 8\sin^5\theta\cos\theta = 1$

 $\mathbf{V}_{\mathbf{A})}$

 $\mathbf{V}_{B)}$

 $\mathbf{V}_{\mathbf{C}}$

 $\mathbf{V}_{\mathbf{D})}$

