## **Honors Trigonometry**

Copy original problem.

Per \_\_\_\_\_ Date \_\_\_\_

Convince me that you understand the concept!

No Calculators, of course.

## **Chapter 4 Exam**

I Solve  $\forall x \in [0,2\pi)$  (i.e.  $0 \le x < 2\pi$ ).

Use proper set notation and include "circle solutions" where appropriate.

(15 pts ea.)

a) 
$$-\sqrt{3}\sin x - \cos x = 1$$

b) 
$$\sin 2x \tan^2 2x - \tan 2x = \sin 2x$$

c) 
$$\tan\left(\pi + \sin^{-1}\frac{2}{3}\right) = x$$

d) 
$$\sec^2 x + \tan x = 1$$

e) 
$$\sin^2 x + 5\cos^2 x - 4 = 0$$

II Prove  $\cot^{-1} x = \tan^{-1} \left(\frac{1}{x}\right) + \pi$  for x < 0(15 pts)

Include explicit comments on each line explaining or justifying what you've done.

 $\mathbf{III}$ For each of the following functions, state the domain and range, draw the graph of the function on a properly labeled axis and show the "memory device" we use for the function. (tot 10 pts)

a) 
$$A(x) = \sin^{-1} x$$
 b)  $B(x) = \cos^{-1} x$  c)  $C(x) = \tan^{-1} x$ 

$$b) \qquad B(x) = \cos^{-1} x$$

c) 
$$C(x) = \tan^{-1} x$$

d) 
$$D(x) = \cot^{-1} x$$
 e)  $E(x) = \sec^{-1} x$  f)  $F(x) = \csc^{-1} x$ 

e) 
$$E(x) = \sec^{-1} x$$

f) 
$$F(x) = \csc^{-1} x$$

Extra Credit ----- 5 pts ------

Solve for x where x is a degree measure :  $\sin^{-1}(\cos x) = 61^{\circ}$