Honors.	Anal	ysis
---------	------	------

Name

Copy original problem.

Date Per

Convince me that you understand the concept!

No Calculators!

Chapters 5, 6, & 7 Exam

Given: $f(x) = \begin{cases} 0 & \text{if } x = 0 \\ x^2 \ln x & \text{if } 0 < x \le 2 \end{cases}$ I

(30 pts tot)

- a) Find the interval(s) where f(x) is decreasing.
- b) Find the interval(s) where f(x) is concave down.
- c) Find, identify and verify the coordinates of all extrema.
- d) Find the coordinates of any point(s) of inflection.
- e) Draw f(x). Be sure to specifically indicate any significant points.

П Given f(x), find f'(x):

(5 pts ea)

- a) $f(x) = \cos(e^{3x})$ b) $f(x) = \ln(e^{3x^2})$ c) $f(x) = x^{e^x}$
- d) $f(x) = \frac{1}{\ln x}$

Ш Find the integral:

(5 pts ea)

- a) $\int \frac{(3-2x)^3}{x} dx$ b) $\int e^{-3x} dx$

IVSimplify using the "Mumaugh" tables:

(5 ps ea)

- a) ln 40
- b) $\log_3 8$
- c) ln (2.4)
- d) $(\log_5 2)(\log_2 25)$

 ${f V}$ Find the x-intercept of the line tangent to $f(x) = e^x$ which has slope e^2 . (10 pts)

Determine the intervals where f(x) is increasing: $f(x) = \sqrt{\frac{(2x^2 + 1)^3}{(3x^2 - 2)^5}}$ (10 pts)

Extra Credit ------ 5 pts ------

The curve $y = \frac{x^2}{x^2 + 1}$ has two inflection points. They are $(\pm p, q)$. Find the value of : $\frac{1}{p^2} + \frac{1}{q^2}$.