Mr. Mumaugh
Honors Trigonometry

Absolutely Right

$$
\sqrt{\star^{2}}=|\star|=\left\{\begin{array}{cl}
-\star & \text { if } \star<0 \\
\star & \text { if } \star \geq 0
\end{array}\right.
$$

Solve and graph the solution set for: $\left|\frac{x-2}{x+3}\right| \geq \frac{1}{2} \quad$ I
(1) Draw a number line. Mark significant positions (ie. when terms would be a zero.) label interval numbers using Roman Numerals.

Supply explicit reasons and/or explanations for each of the steps: $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}, \ldots$
(2) Consider interval I
a) $\left|\frac{-}{-}\right|=|+|$
(3) consider interval II
a) $\quad\left|\frac{-}{+}\right|=|-|$
(4) consider interval III
b) $\frac{x-2}{x+3} \geq \frac{1}{2}$
b) $\frac{-(x-2)}{x+3} \geq \frac{1}{2}$
c) $2 x-4 \leq x+3$
c) $-2 x+4 \geq x+3$
d) $x \leq 7$
d) $x \leq \frac{1}{3}$
(5) $x \leq 7$ and $x<-3$

SO \qquad
(6) $x>-3$ and $x \leq \frac{1}{3}$

So \qquad
b) $\frac{x-2}{x+3} \geq \frac{1}{2}$
c) $2 x-4 \geq x+3$
d) $x \geq 7$
a) $\left|\frac{Z}{-}\right|=|+|$
(7) $x>2$ and $x \geq 7$

SO

Note: -3 is the left end point of interval II and 2 is the left end point of interval III.
-3 is not included because it would allow division by zero.
2 is not included because the proper solution's interval does not inlcude the number 2.

