\qquad
Copy original problem.
Convince me that you understand the concept!

Chapter 5 Exam

I State whether there are none or one or two or more triangles possible from the given information.
Do not actually solve for any missing parts. You are to include a picture and a brief statement supporting your conclusion.
A) $\mathrm{C}=130^{\circ}$
B) $\mathrm{B}=40^{\circ}$
C) $\mathrm{A}=50^{\circ}$
D) $\mathrm{C}=30^{\circ}$
E) $\mathrm{C}=30^{\circ}$
$\mathrm{c}=40$
$\mathrm{b}=10$
$b=60$
$\mathrm{c}=10$
$\mathrm{a}=6$
$\mathrm{b}=10$
$\mathrm{c}=25$
$\mathrm{c}=5$
$\mathrm{b}=30$
b $=4$
F) $\quad \mathrm{a}=5$
G) $\mathrm{A}=38^{\circ}$
H) $\mathrm{C}=60^{\circ}$
I) $\quad \mathrm{A}=150^{\circ}$
J) $\mathrm{B}=95^{\circ}$
$\mathrm{b}=2$
$B=60^{\circ}$
$\mathrm{a}=8$
$\mathrm{a}=60$
$\mathrm{a}=22 \sqrt{3}$
c $=8$
$\mathrm{C}=90^{\circ}$
$B=60^{\circ}$
$\mathrm{c}=40$
$b=22 \sqrt{3}$

II You will solve the triangle in this section. Find all missing parts. Find area and perimeter

Given: $\quad a=7 \quad b=9 \quad A=35^{\circ}$.

III Without using a calculator, determine the following (simplify, of course).
(5 pts ea)
A) Given: $\sec \theta=x$. Determine $\sin 2 \theta$.
B) Given: $\sec ^{2} \theta=x$. Determine $\cos ^{2} 2 \theta+\sin ^{2} 2 \theta$.
C) Given: $\tan \theta=2 x$. Determine $\sin ^{2} \theta$. D) Given: $\sin \theta=\frac{x}{\sqrt{2+x^{2}}}$. Determine $\cos \theta$.

IV Consider the figure. All lines which look parallel are parallel.
All lines which look perpendicular are perpendicular. $\mathrm{AB}=8$. $\mathrm{EH}=27$. AH is a straight line which is composed of the lines AD and DH . Determine the length of the lines AD and DH . That is, find the length of AH in terms of θ. (10 pts) (hint: Your calculator is of no help on this problem.)

Extra Credit

Show that the area of any trangle ABC can be given by: Area $=b c \sin \frac{A}{2} \cos \frac{A}{2}$

