No Decimal Answers.
Convince $m e$ that you understand the concept.
Per \qquad Date

CHAPTER \# 3

I This section covers all of the first two pages of this exam. For each problem, supply domain, range, amplitude, period and phase shift (including direction) and draw the graph in the areas provided. Be sure your drawing crosses or touches the Y-axis. You may do the work for this exam directly on this exam paper rather than on the "newsprint" as usual. If you do work on newsprint be sure it is labeled with its problem number. Indicate significant coordinates. Each problem in this section is worth 15 points.
A) $\quad A(x)=2 \cos \left(\frac{2 x}{3}+\frac{\pi}{6}\right)+1$
D_{A}
R_{A}
Per

Amp
P.S.

B) $\quad B(x)=-2 \sin \left(\frac{2 x}{3}+\frac{\pi}{2}\right)-1$
D_{B}
R_{B}
Per

Amp
P.S.

C) $\quad C(x)=\csc \left(2 x+\frac{\pi}{2}\right)+1$
D_{C}
R_{C}
Per

Amp
P.S.

D) $\quad D(x)=\tan \frac{1}{2} x-\frac{1}{2}$
D_{D}
R_{D}
Per

Amp
P.S.

E) $\quad E(x)=\sec \frac{3}{4} x$
D_{E}
R_{E}
Per

Amp
P.S.

Draw a sketch of $\tan x$ and $\cot x$ on the supplied axis.

Describe what must be done to $\tan x$ to make it coincide with $\cot x$.

Prove that your changes would have the desired effect.

III Given P_{1} starts at $\left(\frac{-1}{2}, \frac{\sqrt{3}}{2}\right)$ with $\omega_{1}=\frac{\pi}{4}$ and P_{2} starts at $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ with $\omega_{2}=\frac{\pi}{3}$
(10 pts tot)
A) Find t when the two points first concide.
B) Confirm that P_{1} and P_{2} do, in fact, have the same coordinates at the t found in part A.

EXTRA CREDIT
 5 pts

Given $f(x)=\cos 2 x \sin x+\sin 2 x \cos x$. Prove $f(x)$ has period $\frac{2 \pi}{3}$.

