Honors Trigonometry

Copy original problem.

Ι

Name _____

Convince me that you understand the concept!

Chapter 5 Exam

For each of the following, find all missing parts. Us	se 3-place decimals and don't round early!	Angles are
to accurate to the nearest minute. (Hint: all triangle	es exist)	(15 pts ea)

A)	a	=	10	B)	b	=	12	C)	А	=	38°
	b	=	15		c	=	20		С	=	25°
	с	=	20		А	=	30°		c	=	15
D)	b	=	7	E)	a	=	5				
	а	=	9		b	=	4				
	В	=	35°		c	=	3				

Π Solve $\forall \theta \epsilon 0^{\circ} \leq \theta < 360^{\circ}$

 $\sin\theta + \cos\theta - 1 = 0$

III Given $0^{\circ} \le \theta < 90^{\circ}$, and $\tan^2 \theta = \frac{2}{3}$. Find the *exact* value of $\sin(\theta - 90^{\circ})$ (i.e. no decimals) (10 pts)

Extra Credit ------ 5 pts ------

Find the *exact* area of the triangle with sides of: $\sqrt{5}$, $\sqrt{11}$, and 4. Explain.

Per _____ Date _____

(15 pts)