Honors Trigonometry

Copy original problem.

Per _____ Date _____

Convince me that you understand the concept!

No Calculators.

Chapter 1 Exam

I Define Absolute Value.

(5 pts)

П Solve. Graph solution on a properly labeled numberline.

(15 pts ea)

$$A) \qquad \frac{\left|9-2x\right|}{x-5} \le \frac{7}{x-5}$$

B)
$$x(\frac{1}{2}x - 1) - 6 = -\frac{1}{2}$$

Ш Rewrite as a piece-meal function. Graph: f(x) = |x + 2| + |x - 3|

$$f(x) = |x + 2| + |x - 3|$$
 (15 pts)

IV Given:
$$f(x) = \frac{x+2}{x-3}$$
, $g(x) = \frac{x-1}{x+1}$, and $h(x) = \sqrt{x}$ (5 pts ea)

Find the value of $f(g(\frac{1}{3}))$. a)

- b) Find the **formula** ONLY for g(f(x)).
- Find the **domain** ONLY for f(f(h(x))). d) Find the **domain** ONLY for h(f(x)). c)

For each of the following, list the three items including the given item. (x, y) is the coordinate pair on the unit circle, Z is the arc length in radians, and the Greek letter alpha ($\boldsymbol{\alpha}$) is the angle in degrees. Draw the circle for each.

(NOTE: You will draw a total of 6 circles!)

(25 pts total)

- A) Find (x, y) and α given:
- $1) z = \frac{7\pi}{6}$
- 2) $z = \frac{5\pi}{3}$

- B) Find (x, y) and Z given:
- 1) $\alpha = 240^{\circ}$
- 2) $\alpha = 120^{\circ}$

- C) Find Z and α given:
- 1) (-1,0)
- $2) \quad \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$

Extra Credit ----- 5 pts -----

If the chances of rain are 40 percent on Saturday and 20 percent on Sunday, what is the chance that it will rain during the weekend?