We have a sine add/subtract formula $\quad \sin (A \pm B)=\sin A \cos B \pm \sin B \cos A$ and we have the cosine add/subtract formula: $\quad \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
so you know there has to be a tangent add/subtract formula. The bad news is that there are secant, cosecant and cotangent add/subtract formulas too. The good news is that we don't bother with them but we do know and love the tangent add/subtract formula:

$$
\begin{aligned}
\tan (A \pm B) & =\frac{\sin (A \pm B)=\sin A \cos B \pm \sin B \cos A}{\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B} \\
& =\frac{\sin (A \pm B)=\sin A \cos B \pm \sin B \cos A}{\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B} \infty \frac{\frac{1}{\cos A \cos B}}{\cos A \cos B} \\
& =\frac{\frac{\sin A \cos B}{\frac{\cos A \cos B}{\cos A \cos B} \mp \frac{\sin B \cos A}{\cos A \cos B}}}{\frac{\sin A \sin B}{\cos A \cos B}} \\
& =\frac{\frac{\sin A}{\cos A} \pm \frac{\sin B}{\cos B}}{1 \mp \frac{\sin A \sin B}{\cos A \cos B}} \\
& =\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
\end{aligned}
$$

Is the tangent an odd, an even (or neither) function?

$$
\begin{aligned}
\tan (0-x) & =\frac{\tan 0-\tan x}{1-\tan 0 \tan x} \\
& =\frac{0-\tan x}{1} \\
& =-\tan x
\end{aligned}
$$

so tangent is an odd function.

Tangent has period \neq. We saw that yesterday.... but with the tangent add/subtract formula it is much cleaner...

$$
\begin{aligned}
\tan (x+\neq) & =\frac{\tan x+\tan \neq}{1-\tan x \tan \neq} \\
& =\frac{\tan x+0}{1-\tan x(0)} \\
& =\frac{\tan x}{1} \\
& =\tan x
\end{aligned}
$$

A couple of fun examples on the next page.....

Given: $\tan x=3 \quad \neq<x<\frac{3 \neq}{2}$
Find $\sin 2 x$

$$
\begin{aligned}
& \frac{\sin x}{\cos x}=3 \\
& \sin x=3 \cos x \\
& \sin ^{2} x=9 \cos ^{2} x \\
& \sin ^{2} x=9\left(1-\sin ^{2} x\right) \\
& \sin ^{2} x=9-9 \sin ^{2} x \\
& 10 \sin ^{2} x=9 \\
& \sin ^{2} x=\frac{9}{10} \\
& \sin x= \pm \frac{3}{\sqrt{10}}= \pm \frac{3 \sqrt{10}}{10} \quad \begin{array}{l}
\text { but } x \text { is in the third quadrant so we want }-\frac{3 \sqrt{10}}{10} \\
\text { furtfermore, since the Heston Identity says } \\
S^{2}+C^{2}=1
\end{array} \\
& \text { so so } C^{\infty}=1-S^{2} . \\
& \infty 0^{2}+\cos ^{2} x=1 \\
& \cos ^{2} x=\frac{1}{10}
\end{aligned}
$$

finally we are ready to compute $\sin 2 x \ldots$.

$$
\text { since } \sin 2 x=\sin (x+x)=\sin x \cos x+\sin x \cos x=2 \sin x \cos x \quad \pm \sqrt{\sqrt{10}} \text { cosine is negative so we want }
$$ so....

$$
\begin{aligned}
& 2 \cdot \frac{-3}{\sqrt{10}} \cdot \frac{-1}{\sqrt{10}} \\
& \frac{6}{10}=\frac{3}{5}
\end{aligned}
$$

and the final answer $=\begin{aligned} & 3 \\ & 5\end{aligned}$

convenient values

Let's find the x when we know that $\tan x=-\frac{\sqrt{3}}{3}$.

1) Let's consider the number $\frac{\sqrt{3}}{3}$. We know that $\frac{\sqrt{3}}{3}$ is the answer you'd get when you rationalized $\frac{1}{\sqrt{3}}$.
2) $\sqrt{3} \ldots \ldots \sqrt{3} \ldots \ldots$ when you last saw a $\sqrt{3}$ in this class, what number was under it? 2 ? Yes that is $\frac{\sqrt{3}}{2}$.
3) $\frac{\sqrt{3}}{2} \ldots \ldots \frac{\sqrt{3}}{2} \ldots$. when you last saw a $\frac{\sqrt{3}}{2}$ in this class, what number was with it? $\frac{1}{2}$?

Yes that is, $\frac{\sqrt{3}}{2}$ and $\frac{1}{2}$ are "companions" aren't they?
4) Tangent is negative in the 2 nd and 4th quadrants so that means x in this problem is in the 2 nd or 4th quads.
5) so we have $-\frac{\sqrt{3}}{3}$ which is $-\frac{1}{\sqrt{3}}$ which is $-\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$ which is $\frac{\sin x}{\cos x}$ thus: $\} x \underset{\infty}{\infty} \underset{\infty}{\infty}, \frac{11 \neq \infty}{6 \infty}$

