Day 5 notes

H Trig

We have a sine add/subtract formula $\sin(A \pm B) = \sin A \cos B \pm \sin B \cos A$ and we have the cosine add/subtract formula: $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

so you know there has to be a tangent add/subtract formula. The bad news is that there are secant, cosecant and cotangent add/subtract formulas too. The good news is that we don't bother with them but we do know and love the tangent add/subtract formula:

$$\tan(A \pm B) = \frac{\sin(A \pm B) = \sin A \cos B \pm \sin B \cos A}{\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B}$$
$$= \frac{\sin(A \pm B) = \sin A \cos B \pm \sin B \cos A}{\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B} \propto \frac{\frac{1}{\cos A \cos B}}{\frac{1}{\cos A \cos B}}$$
$$= \frac{\frac{\sin A \cos B}{\cos A \cos B} \pm \frac{\sin B \cos A}{\cos A \cos B}}{\frac{\cos A \cos B}{\cos A \cos B}}$$
$$= \frac{\frac{\sin A}{\cos A} \pm \frac{\sin B}{\cos A \cos B}}{1 \mp \frac{\sin A \sin B}{\cos A \cos B}}$$
$$= \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

Is the tangent an odd, an even (or neither) function?

 $\tan(0-x) = \frac{\tan 0 - \tan x}{1 - \tan 0 \tan x}$ $= \frac{0 - \tan x}{1}$ $= -\tan x$ so tangent is an odd function. $\tan(x + z) = \frac{\tan x + \tan z}{1 - \tan x \tan z}$ $= \frac{\tan x + 0}{1 - \tan x(0)}$ $= \frac{\tan x}{1}$

 $= \tan x$

Tangent has period \neq . We saw that yesterday....

but with the tangent add/subtract formula it is

A couple of fun examples on the next page.....

Given: $\tan x = 3 \qquad \neq < x < \frac{3\neq}{2}$ Find $\sin 2x$ $\frac{\sin x}{\cos x} = 3$ $\sin x = 3\cos x$ $\sin^2 x = 9\cos^2 x$ $\sin^2 x = 9(1 - \sin^2 x)$ $S^2 + C^2 = 1$ so $C^2 = 1 - S^2$. $\sin^2 x = 9 - 9\sin^2 x$ $10\sin^2 x = 9$ $\sin^2 x = \frac{9}{10}$ but x is in the third quadrant so we want $-\frac{3\sqrt{10}}{10}$ $\sin x = \pm \frac{3}{\sqrt{10}} = \pm \frac{3\sqrt{10}}{10}$ furthermore, since the Heston Identity says $S^2 + C^2 = 1$ so $\frac{\infty 9}{\infty 10^{\infty}} + \cos^2 x = 1$ $\cos^2 x = \frac{1}{10}$ *finally* we are ready to compute $\sin 2x \dots$ since $\sin 2x = \sin(x+x) = \sin x \cos x + \sin x \cos x = 2 \sin x \cos x$ since $\sin 2x = \sin x \cos x = \pm \frac{1}{\sqrt{10}}$ since we are in the 3rd quadrant, cosine is negative so we want $\cos x = -\frac{1}{\sqrt{10}}$ so.... $2 \cdot \frac{-3}{\sqrt{10}} \cdot \frac{-1}{\sqrt{10}}$ and the final answer $= \frac{3}{5}$ $\frac{6}{10} = \frac{3}{5}$ convenient values Let's find the x when we know that $\tan x = -\frac{\sqrt{3}}{2}$. 1) Let's consider the number $\frac{\sqrt{3}}{3}$. We know that $\frac{\sqrt{3}}{3}$ is the answer you'd get when you rationalized $\frac{1}{\sqrt{3}}$. 2) $\sqrt{3}$ $\sqrt{3}$ when you last saw a $\sqrt{3}$ in this class, what number was *under* it? 2? Yes that is $\frac{\sqrt{3}}{2}$. 3) $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{2}$ when you last saw a $\frac{\sqrt{3}}{2}$ in this class, what number was *with* it? $\frac{1}{2}$? Yes that is, $\frac{\sqrt{3}}{2}$ and $\frac{1}{2}$ are "companions" aren't they? 4) Tangent is negative in the 2nd and 4th quadrants so that means x in this problem is in the 2nd or 4th quads. 5) so we have $-\frac{\sqrt{3}}{3}$ which is $-\frac{1}{\sqrt{3}}$ which is $-\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$ which is $\frac{\sin x}{\cos x}$ thus: $-\frac{1}{\sqrt{3}} x \approx \frac{\infty 5 \neq}{\infty 6}$, $\frac{11 \neq \infty}{6 \approx}$