Advanced Placement Calculus
 Copy original problem.

Per \qquad Date

Chapter 9 Exam

Assume constants of integration to be zero.
Given: $f(x)=\sqrt{\frac{1+x}{1-x}}$. This problem concerns $\int f(x) d x$.
(70 pts tot)
a) Let $z^{2}=\frac{1+x}{1-x}$. Show that the $\int f(x) d x$ can be rewritten as $\int \frac{4 z^{2}}{\left(z^{2}+1\right)^{2}} d z$
b) Make a trig substitution in $\int \frac{4 z^{2}}{\left(z^{2}+1\right)^{2}} d z$ and then integrate.

Leave your antiderivative in terms of θ.
c) Let $x=\cos 2 t$. Rewrite $d x$ so that it involves only single angle arguments (ie t rather than $2 t$). Substitute into $\int \sqrt{\frac{1+x}{1-x}} d x$. Integrate. Leave your antiderivative in terms of t.
d) Multiply $\int \sqrt{\frac{1+x}{1-x}} d x$ by the fraction $: \frac{\sqrt{1+x}}{\sqrt{1+x}}$. Integrate the result.
e) Sketch the graph of $\int \sqrt{\frac{1+x}{1-x}} d x$ (from your grapher) using window $x \in[-2,2]$ and $y \quad \varepsilon[0,5]$.
f) Rewrite $\int \sqrt{\frac{1+x}{1-x}} d x$ with limits of integration $x=-1$ to $x=+1$. What do you notice that might be significant? Considering the substitution made in part "a", the new limits would be from $z=0$ to $z=\infty$. In part " b " you made a trig substitution. Compute the new limits of integration in terms of θ and then evaluate your antiderivative answer to part " b ".
g) Consider the changes made in part " c " above including the introduction of limits to be from $x=-1$ to $x=+1$, compute the new limits of integrations in terms of t and then evaluate your antiderivative from part " c ".
h) Consider the changes made in part "d" above including the introduction of limits to be from $x=-1$ to $x=q$. Compute the new limits of integration and then evaluate your antiderivative from part "d ". Apply the limit as $q \rightarrow 1^{-}$.
i) Use your calculator to compute $\operatorname{FnInt}\left(\sqrt{\frac{1+x}{1-x}}, x,-1,1\right)$

IIntegrate: $\int \frac{7 x^{2}-4 x}{\left(x^{2}+1\right)(x-2)} d x$ (No calculator)
【 Use the method "parts" only one time and the fact that $\sin ^{2} \theta=\sin \theta \cdot \sin \theta$ to integrate: $\int \sin ^{2} \theta d \theta$

Extra Credit

Use the method of partial fractions to rewrite the revised integral for part I a. Do not integrate.

