Advanced Placement Calculus

Copy original problem.
Convince $m e$ that you understand the concept!
Calculators may be used on Ia and Id ONLY!

Chapter 9 Exam

I Given: $\int_{2}^{2 \sqrt{3}} \frac{x^{2} d x}{\sqrt{16-x^{2}}}$
Per \qquad Date \qquad
a) Compute the value of the given integral with your calculator.
b) In the original, make the substitution $x=4 \sin \theta$ (including the change in limits) then integrate and evaluate.
c) In the original, make the substitution $u=\sqrt{16-x^{2}} \ldots .$. then integrate and evaluate.
d) Reconcile the three answers above.
\pm Integrate $\int \cos ^{2} \theta d \theta$ using "Parts"

【 Given: $\int \frac{d x}{2+\tan x}$. You, no doubt, have noticed that the desired $\sec ^{2} x$ is not included.
(40 pts tot)
a) Convert the fraction, $\frac{1}{2+\tan x}$ into a single, proper fraction involving sine and cosine.
b) Briefly explain why you still do not have the desired $\frac{d u}{u}$ situation.
c) Let $\tan x=y$. Rewrite the original in terms of y.
d) Rewrite your answer to "c" as two integrals with proper numerators.
e) Integrate your answer to part "d".
f) Show that your answer is equivalent to: $\frac{1}{5}\left(\ln \left|\frac{2+\tan x}{\sec x}\right|+2 x\right)+c$

Extra Credit

Given: $\int \cot x \csc ^{2} x d x$
Jake said, "I use $u=\cot x$." Jed said "I use $u=\csc x$ ". Both integrate their problems (and got different answers, of course.) Resolve the dilemma and explain. Be very specific. I'm not interested in generalities.

