Name

Per

Date

Copy original problem. Convince *me* that **you** understand the concept! Calculators may be used on Ia and Id ONLY!

Advanced Placement Calculus

Chapter 9 Exam

(40 pts tot)

(20 pts)

- Given: $\int_{-\infty}^{2\sqrt{3}} \frac{x^2 dx}{\sqrt{16 r^2}}$
- a) Compute the value of the given integral with your calculator.
- b) In the original, make the substitution $x = 4\sin\theta$ (including the change in limits) then integrate and evaluate.
- c) In the original, make the substitution $u = \sqrt{16 x^2}$ then integrate and evaluate.
- d) Reconcile the three **answers** above.

Integrate $\int \cos^2 \theta \ d\theta$ using "Parts"

III Given: $\int \frac{dx}{2 + \tan x}$. You, no doubt, have noticed that the desired $\sec^2 x$ is not included. (40 pts tot)

a) Convert the fraction, $\frac{1}{2 + \tan x}$ into a single, proper fraction involving sine and cosine.

b) Briefly explain why you still do not have the desired $\frac{du}{u}$ situation.

- c) Let $\tan x = y$. Rewrite the original in terms of y.
- d) Rewrite your answer to "c" as two integrals with proper numerators.
- e) Integrate your answer to part "d".
- f) Show that your answer is equivalent to: $\frac{1}{5} \left(\ln \left| \frac{2 + \tan x}{\sec x} \right| + 2x \right) + c$

Extra Credit ------ 5 pts ------

Given: $\int \cot x \csc^2 x \, dx$

Jake said, "I use $u = \cot x$." Jed said "I use $u = \csc x$ ". Both integrate their problems (and got different answers, of course.) Resolve the dilemma and explain. Be very specific. I'm not interested in generalities.

Ι

Π