\qquad
Copy original problem.
Convince me that you understand the concept!

Per

Date

Chapters 7 \& $8 \quad$ Exam

I Use the definition of definite integral to show that $\int_{2}^{4} 6 d x=12$. (hint: The definition has nothing to do with a graph.)
II Differentiate: $g(x)=\int_{x^{2}}^{2} \sqrt{\cos t} d t+\int_{2}^{3} \sqrt{\cos t} d t$
III Given the three equations: $x^{2}+y^{2}=4, y=x+2$, and $\mathrm{y}=\mathrm{x}$.
A) Sketch the three equations on the same axis. Shade the region above the x-axis bounded by these curves.
B) Set up, but Do Not Evaluate the definite integral(s) which describe the shaded region in part A. Give a very explicit explanation of your methods.
IV The value $\frac{1}{b-a} \int_{a}^{b} f(x) d x$ is called the mean (or average) value of f on the interval [a, b] and is usually denoted $f_{a v}$. Let $f(x)=\sin x^{2}$ for $0 \leq x \leq \sqrt{\pi}$
(20 pts total)
a) Describe the window setting necessary to yield a clear view of the function in the given interval on your calculator.
b) Sketch your graph.
c) Predict the mean value, $f_{a v}$, of f on $[0, \sqrt{\pi}]$. Call your prediction A.
d) Use the program RiemannC with $n=100$ to find the approximation of the integral. Compute $f_{a v}$ using this value and call this value B.
e) Use fnInt $\left(Y_{1}, X, 0, \sqrt{\pi}\right) / \sqrt{\pi}$ (found in the MATH menu). Call this value C.
f) Compare the values A, B, and C. Briefly explain.

V The velocity $v(t)$, in $\mathrm{ft} / \mathrm{sec}$, of a car traveling on a straight road, for $0 \leq t \leq 50$, is shown in a table of values for $v(t)$, at 5 second intervals of time.
Approximate the definite integral, $\int_{0}^{50} v(t) d t$ with a riemann sum, using the mid-
points of five subintervals of equal length. Using correct units, explain the meaning of this integral.
(20 pts)
VI Given $f(x)=\sqrt{x}$ and $g(x)=\frac{1}{x}$. Draw the graph showing the area computed and compute the exact area described.
(tot 20)
а) $\int_{1}^{2} f(x) d x-\int_{1}^{2} g(x) d x$
b) $\int_{0}^{1} f(x) d x+\int_{1}^{2} g(x) d x$

t	$v(t)$
(seconds)	(feet per second)
0	0
5	12
10	20
15	30
20	55
25	70
30	78
35	75
40	

Extra Credit

Lemma 3, used by our text in the proof of the Fundamental Theorem of Calculus states:
$f(X)(b-a)=\int_{a}^{b} f(x) d x$. Using the function in Section IV. Compute the "cap X " value.

