\qquad
Copy the original problem.
Convince $m e$ that you understand the concept.
Per \qquad Date
(Remember: 3 decimal places!!)
CHAPTER \# $\mathbf{7} \& 8$
I The definite integral of a function f over an interval [a, b] is denoted by $\int f(x) d x$ and defined as follows: $\int f(x) d x=\lim _{\text {mesh } \rightarrow 0} f\left(X_{i}\right)\left(x_{i}-x_{i-1}\right)$.
Describe each of the following and its purpose:
(15 pts tot)
a) X_{i}
b) $x_{i}-x_{i-1}$
c) $f\left(X_{i}\right)$
d) $f\left(X_{i}\right)\left(x_{i}-x_{i-1}\right)$
e) mesh

II A racing car achieves the following speeds (in miles per hour) during the first five seconds of a race. Use appropriate left and right sums to approximate the distance the driver travels during

seconds	1	2	3	4	5
$m p h$	16	40	62	82	100

(20 points)
II For each of the following, explain why we cannot evaluate the definite integral.
a) $\int_{0}^{1} \frac{1}{x} d x$
b) $\int_{0}^{\infty} x d x$
c) $\int_{0}^{\pi} \tan x d x$
d) $\int_{-1}^{2} \sqrt{x} d x$

IV A function f is piecewise continuous on [a, b] if it is continuous except, possibly, for a finite set of points at which it has a discontinuity. It can be shown that if f is piecewise continuous
on [a, b], then $\int_{a}^{b} f(x) d x$ exists. Let $f(x)=\left\{\begin{array}{cc}x^{2} & ; 0 \leq x \leq 2 \\ x & ; 2<x \leq 5\end{array}\right.$
a) Sketch the graph of f.
b) Write the definite integrals needed to describe the area of the region bounded by the graph of f and the x-axis between $x=0$ and $x=5$.
c) Find thearea described.
$\mathbf{V} \quad$ Assume f is a continuous function and that $\int_{0}^{x} f(t) d t=\frac{2 x}{4+x^{2}}$
a) Determine $f(0)$
b) Find the zeros of f, if any.

VI The figure shows the graphs of $f, \quad f^{\prime}, \quad$ and $\int_{0}^{x} f(t) d t$. Identify each graph and explain your choices.

EXTRA CREDIT
Evaluate: $\lim _{x \rightarrow 3}\left(\frac{1}{x-3} \int_{3}^{x} \frac{\sin t}{t} d t\right)$

