Chapters 7 \& 8 Exam

IThe graph on the right is the derivative of $F(x)$ (i.e. This is the graph of $F^{\prime}(x)$.) $F(x)$ is some function which is continuous and differentiable and $F(20)=150$.
a) Partition the interval $[20,50]$ into 3 sections of equal length. Choose the left edge of the section for the sample point and write the approximating sums for the shaded area under the curve $F^{\prime}(x)$. Compute the value of the sum.
b) Partition the interval $[20,50]$ into 3 sections of equal length. Choose the right edge of the section for the sample point and write the approximating sums for the
 shaded area under the curve $F^{\prime}(x)$. Compute the value of the sum.
c) Let the approximation of the shaded area be the average of your answers to parts a and b. Identify this average by calling it " A ".
d) For what x value does $F(x)$ have a maximum? Explain!
e) Using the First FTC, determine an approximation for that maximum value of $F(x)$. (hint: Write the first FTC down, re-read this problem, look at your work, then work out the answer to this problem.)

Let $f(x)=\frac{1}{x+1}, x_{i}=\frac{i}{n}, X_{i}=\frac{i-1}{n}$, and $i=1,2, \ldots, n$.
Let the points form a partition of the closed interval [0,1]. Use summation notation to write the corresponding approximating sum. While keeping the sigma notation, simplify completely while removing the letters f, X, and x.

Let $g(x)=\int_{-1}^{2 x} f(t) d t$ when given the graph of $y=f(t)$:
a) Explain clearly why the domain of
$g(x)$ is: $D_{g}-2 \leq x \leq 1$
Include reasoning how you know there is not a second interval.

b) For what values of x does $g^{\prime}(x)=1$
c) Determine the coordinates of all extrema and all axis intercepts for the function $g(x)$.
d) Draw $g(x)$.

Extra Credit

5 pts

Given: $\frac{\pi}{2}<x<\pi$. Find $f^{\prime}(x)$ if $f(x)=\int_{0}^{\sin x} \sin ^{-1} t d t$.

