Advanced Placement Calculus

Copy original problem.
Convince $m e$ that you understand the concept.

Chapter 6 Mechanical Exam

The figure shows the graph of $f^{\prime}(x)$,
(40 pts tot) the derivative of a function $f(x)$. The domain of $f(x)$ is the set of all real numbers x such that $-3 \leq x \leq 5$.
a) For what values of x does f have a relative maximum? Explain.
b) For what values of x does f have a relative minimum? Explain.
c) On what intervals is the graph of f concave upward? Use $f^{\prime}(x)$ in your justification.

d) Suppose that $f(1)=0$. On an $x y$-plane, draw a sketch that shows the general shape of the graph of the function f on the open interval $0<x<2$.

This problems deals with functions defined by $f(x)=x+b \sin x$, where b is a positive constant and $-2 \pi \leq x \leq 2 \pi$.
a) Sketch the graphs of two of these functions: $y=x+\sin x$ and $y=x+3 \sin x$ on the same axis.
b) Find the x-coordinates of all points, $-2 \pi \leq x \leq 2 \pi$, where the line $y=x+b$ is tangent to the graph of

$$
f(x)=x+b \sin x .
$$

c) Are the points of tangency described in part (b) relative maximum points of f ? Why?
d) For all values of $b>0$, show that all inflection points of the graph of f lie on the line $y=x$.

Find the following limits. (All exist). Use l'hospital's rule at least once.
Be sure your reasoning is very clear.
(20 pts tot)
a) $\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2}{1-\cos 2 x}$
b) $\quad \lim _{x \uparrow \pi / 2}(2 x-\pi) \sec x$
c) $\quad \lim _{x \downarrow 0}\left(\frac{1}{e^{x}-1}-\frac{1}{x}\right)$

Extra Credit

Given: $f(x)=\frac{2}{5}(1+x)^{\frac{5}{2}}-\frac{2}{3}(1+x)^{\frac{3}{2}}$ and $g(x)=\frac{2 x}{3}(1+x)^{\frac{3}{2}}-\frac{4}{15}(1+x)^{\frac{5}{2}}$.
Find $f^{\prime}(x)$ and $g^{\prime}(x)$. What do your answers suggest? What is that constant?

