Advanced Placement Calculus

Name

Copy original problem.

d)

I

Convince *me* that you understand the concept!

Chapter 6 Mechanical Exam

The figure shows the graph of f'(x), the derivative of a function f(x). The domain of f(x)is the set of all real numbers x such that $-3 \le x \le 5$.

- For what values of x does f have a a) relative maximum? Explain.
- For what values of x does f have a b) relative minimum? Explain.
- On what intervals is the graph of fc) concave upward? Use f'(x) in your justification.
 - Suppose that f(1) = 0. On an xy-plane, draw a sketch that shows the general shape of the graph of

-3-2

0

- 1

- the function f on the open interval 0 < x < 2.
- Π This problems deals with functions defined by $f(x) = x + b \sin x$, where b is a positive constant and (40 pts tot) $-2\pi \leq x \leq 2\pi$.
 - a) Sketch the graphs of two of these functions: $y = x + \sin x$ and $y = x + 3\sin x$ on the same axis.
 - b) Find the *x*-coordinates of all points, $-2\pi \le x \le 2\pi$, where the line y = x + b is tangent to the graph of $f(x) = x + b \sin x \quad .$
 - c) Are the points of tangency described in part (b) relative maximum points of f? Why?
 - d) For all values of b > 0, show that all inflection points of the graph of f lie on the line y = x.
- Ш Find the following limits. (All exist). Use l'hospital's rule at least once. Be sure your reasoning is very clear. (20 pts tot)

a)
$$\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos 2x}$$
 b) $\lim_{x \uparrow \frac{\pi}{2}} (2x - \pi) \sec x$ c) $\lim_{x \downarrow 0} \left(\frac{1}{e^x - 1} - \frac{1}{x} \right)$

Extra Credit ------ 5 pts ------

Given:
$$f(x) = \frac{2}{5}(1+x)^{\frac{5}{2}} - \frac{2}{3}(1+x)^{\frac{3}{2}}$$
 and $g(x) = \frac{2x}{3}(1+x)^{\frac{3}{2}} - \frac{4}{15}(1+x)^{\frac{5}{2}}$.

Find f'(x) and g'(x). What do your answers suggest? What is that constant?

3

2

Date

Per

(40 pts tot)

► x