Advanced Placement Calculus

Copy original problem.
Convince $m e$ that you understand the concept!

Chapter 6 Mechanical Exam

Let $f(x)=x^{2}, g(x)=\cos x$, and $h(x)=x^{2}+\cos x$. From the
a) Sketch the actual graph with $x \varepsilon[-6,6]$ and $y \varepsilon[\pm 6,40]$
b) Use $h^{\prime \prime}(x)$ to explain why the graph of h does not look like figure 3 .

1 Given $f(x)=x^{\frac{5}{3}}+5 x^{\frac{2}{3}}$
(30 pts tot)
a) Draw and fill in f, f^{\prime}, and $f^{\prime \prime}$ number lines.
b) Determine the coordinates of and identify all significant points.
c) Specifically state intervals where f is increasing, decreasing, concave up, and concave down.
d) Sketch $f(x)$

I Find the following limits (all limits exist)
(5 pts ea)
a) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$
b) $\lim _{x \rightarrow 1} \frac{e^{x}-e}{5 \ln x}$
c) $\lim _{x \rightarrow 0^{+}}(\sin x)^{\sin x}$
d) $\lim _{x \rightarrow 0^{+}} x^{\frac{2}{\ln x}}$
e) Agree or disagree. Support your position. "Any number to the zero power is one."

Given $f(x)=\ln x$ and $g(x)=k x$. Determine k so that g is tangent to f.

Define each of the following. For each, draw a sketch illustrating your definition. Be sure to indicate all points mentioned. Do not use specific functions nor numbers.
(20 pts tot)
a) Rolle's Therorem
b) Law of the Mean
c) Intermediate Value Theorem

Extra Credit

5 pts

Let $f(x)=x+\cos x+3$ and $g(x)=3 x^{3}-2 x+4$. Determine the coordinates (accurate to 3 places) of the points of intersection of f and g.

