## A.P. Calculus

Name $\qquad$
Copy original problem.
Convince me that you understand the concept!
No Calculators, of course.
Per $\qquad$ Date
$\qquad$

## Chapter 6 Mechanical Exam

I Evaluate the following limits. Use l'Hopital's rule at least once, if possible.
A) $\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x^{2}+3}-2}$
B) $\quad \lim _{x \rightarrow e} \frac{e^{x}-x^{e}}{x^{x}-e^{e}}$
C) $\quad \lim _{x \rightarrow 0} \frac{\sin x-x}{\tan x-x}$

II Given $f(x)=\frac{x^{3}-x}{x^{3}-4 x}$
(tot 30 pts )
A) Find $\lim _{x \rightarrow 0} f(x)$.
B) Find the zeros of $f$.
C) Write an equation for each vertical and each horizontal asymptote to the graph of $f$.
D) Describe the symmetry of the graph of $f$.
E) Sketch the graph of $f$. Be very sure you explain behavior of graph (use limits).

II Given $f(x)=3 x+1-x^{2}$. Prove that the graph of $f$ is not above the graph of the tangent line to $f$ at $(1,3)$ for all $x$.

IV Let $f$ be a function defined by $f(x)=\left(x^{2}+1\right) e^{-x}$ for $-4 \leq x \leq 4$.
A) What are the coordinates of all extrema? Identify and justify, of course.
B) What are the coordinates of all points of inflection of $f$. Justify, as usual.

Extra Credit

Let $f$ be the function defined by $f(x)=\left\{\begin{array}{cl}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$.
Using the definition of the derivative, prove that $f$ is differentiable at $x=0$.

