Advanced Placement Calculus

Copy original problem.
Convince me that you understand the concept!
No Calculators, as usual.

Chapter 6 Mechanical Exam

Find the following limits. (All limits do exist.) Be very sure your reasoning is clear.
a) $\lim _{x \rightarrow 1} \frac{x^{1 / 3}-x^{1 / 4}}{x^{1 / 3}-x^{1 / 5}}$
b) $\quad \lim _{x \rightarrow \infty} \frac{x^{1 / 3}-x^{1 / 4}}{x^{1 / 3}-x^{1 / 5}}$
c) $\quad \lim _{x \rightarrow 1} x^{\frac{1}{\ln x}}$

【 Given the real numbers a and $b>0$
(40 pts tot)
a) Argue that: $0<\frac{a}{a+b}<1$
b) Given $f(x)=|x|$. Using the fact that $f(x)=\sqrt{x^{2}}$, show that $f^{\prime}(x)=\frac{x}{|x|}$.
c) Given $g(x)=|x|^{a}|x-1|^{b}$ and $g^{\prime}(x)=|x|^{a-2}|x-1|^{b-2} \mathrm{x}(\mathrm{x}-1)(a+b)\left[x-\frac{a}{a+b}\right]$

1) For which x does g have a relative maximum?
2) Show that this relative maximum value is $\frac{a^{a} b^{b}}{(a+b)^{a+b}}$

【I Given $f(x)=\frac{x}{(x-1)^{2}}$. Determine extrema, state coordinates of points of inflection and draw the graph of the function showing these points.

IV
For which $x>0$ does $f(x)=x^{x}$ achieve its minimum value?
V
Prove that $f(x)=\frac{\sin x}{x}$ is a decreasing function for $0<x<\pi / 2$

Extra Credit

Show that the derivative of $g(x)$ in part II C is as it is stated.

