Advanced Placement Calculus

Name Per _____

Date _____

(40 pts tot)

Copy original problem. Convince me that you understand the concept! No Calculators, as usual.

Chapter 6 Mechanical Exam

Find the following limits. (All limits do exist.) Be very sure your reasoning is clear. (5 pts ea)

a) $\lim_{x \to 1} \frac{x^{\frac{1}{3}} - x^{\frac{1}{4}}}{x^{\frac{1}{3}} - x^{\frac{1}{5}}}$ b) $\lim_{x \to \infty} \frac{x^{\frac{1}{3}} - x^{\frac{1}{4}}}{x^{\frac{1}{3}} - x^{\frac{1}{5}}}$ c) $\lim_{x \to 1} x^{\frac{1}{\ln x}}$

Given the real numbers a and b > 0

Ι

Π

- a) Argue that: $0 < \frac{a}{a+b} < 1$
- b) Given f(x) = |x|. Using the fact that $f(x) = \sqrt{x^2}$, show that $f'(x) = \frac{x}{|x|}$.
- c) Given $g(x) = |x|^a |x-1|^b$ and $g'(x) = |x|^{a-2} |x-1|^{b-2} x(x-1)(a+b) \left[x \frac{a}{a+b}\right]$
 - 1) For which x does g have a relative maximum?
 - Show that this relative maximum value is $\frac{a^a b^b}{(a+b)^{a+b}}$ 2)

Given $f(x) = \frac{x}{(x-1)^2}$. Determine extrema, state coordinates of points of inflection and draw the graph Ш of the function showing these points. (20 pts)

For which
$$x > 0$$
 does $f(x) = x^{x}$ achieve its minimum value? (10 pts)

Prove that $f(x) = \frac{\sin x}{x}$ is a decreasing function for $0 < x < \frac{\pi}{2}$ (15 pts)

Extra Credit ------ 5 pts ------

Show that the derivative of g(x) in part II C is as it is stated.