Advanced Placement Calculus

Copy original problem.
Convince me that you understand the concept!

Chapter 5 Exam

Given $f(x)$, find $f^{\prime}(x)$. Simplify answers.
(10 pts ea)
a) $f(x)=-\frac{1}{3} \sin ^{-1}\left(\frac{3}{x}\right)$
b) $f(x)=\ln \left[\ln \left(1+x^{2}\right)\right]$
c) $\quad f(x)=\left(2^{3 x}\right)\left(5^{7 x}\right)$
d) $f(x)=3^{\frac{1}{3} \sin 3 x}$
e) $\quad f(x)=\frac{x}{2} \sqrt{2-x^{2}}+\sin ^{-1}\left(\frac{x}{\sqrt{2}}\right)$

II
Given $y=3^{x}$. Find the x-intercept of the tangent to the curve y at $x=2$.

【I Prove that $y^{\prime}=\sin ^{4} 5 x$, given : $y=\frac{3 x}{8}-\frac{3 \sin 10 x}{80}-\frac{\sin ^{3} 5 x \cos 5 x}{20}$

IV Show that $\sec ^{-1} x=\cos ^{-1}\left(\frac{1}{x}\right)$. Be sure to include all restrictions on any variables.

V Given the information shown on the graph of $f(x)$.
(5 pts ea)
Be sure you explain and/or justify your responses.
a) How you know that $f(x)$ has an inverse function.
b) What is the domain of this inverse function?
c) Find $f^{-1}\left(f^{-1}(3)\right)$.

Extra Credit ------------------------------------- 5 pts

Find the derivative of $f^{-1}(x)$ as defined in section V evaluated at $x=2$. Explain.

