Advanced Placement Calculus

Name _____

Copy original problem.

Per _____ Date ____

Convince me that you understand the concept!

No decimal answers.

Chapter 5 Exam

I Determine if $x^3 + x^2 = \sqrt{x+2}$ is solvable.

(20 pts)

- a) Using a window with $x \in [-2,2]$ $y \in [-1,4]$ graph $y = x^3 + x^2$ and $y = \sqrt{x+2}$. Sketch your picture on your paper.
- b) What conclusion can you make concerning the objective of this problem and your results in part (a)?
- c) Define a function, f(x) which is the difference of the two given equations. Find the narrowest interval [a,b] such that a and b are integers and that f(a) and f(b) are integers which have different signs. Explain, of course.
- d) Using the material above in part, prove the objective of this problem. (ie. Prove a solution exists.) Give a precise answer. Be very specific. Allow for no misinterpretations.

II Show that the derivative of: $(\sqrt{1+x})(\sqrt{2-x}) - 3\sin^{-1}\sqrt{\frac{2-x}{3}}$ is $\frac{\sqrt{2-x}}{\sqrt{1+x}}$ (20 pts)

III Given: $f(x) = \begin{cases} -x^2 & \text{if } x < 0 \\ x^2 & \text{if } x \ge 0 \end{cases}$

Find all three points on the graph of f whose tangent lines pass through (4,3) (20 pts)

IV Given y. Find $\frac{dy}{dx}$ then evaluate $\frac{dy}{dx}$ at the indicated abscissa value. (10 pts ea)

a)
$$y = \ln \left| x + \sqrt{x^2 - 25} \right| + \ln \left| x - \sqrt{x^2 - 25} \right| \dots x = \sqrt{5}$$

b)
$$y = (\arctan x)^{\cos x}$$
 ... $x = \frac{\pi}{4}$

Extra Credit ----- 5 pts -----