Advanced Placement Calculus

Copy original problem.

Name
Per \qquad

Date \qquad
Convince $m e$ that you understand the concept!

No Calculators, please.

Chapter 5 Exam

Let f be the function defined by $f(x)=-2+\ln x^{2}$.
a) For what real numbers is f defined?
b) Find the zeros of f.
c) Write an equation for the line tangent to the graph of f at $x=1$.

Given $f(x)=\sin ^{3} x+\sin ^{3}|x|$
(tot 25 pts)
a) Rewrite f as a piecewise function.
b) Prove f is continuous for all x.
c) Using the definition of the derivative, find $f^{\prime}(0)$.

III
Given f is a one-to-one continuous function with the values in the table:
a) Determine the value of the derivative of $f^{-1}(x)$ evaluated at $x=2$.

x	$f(x)$	$f^{\prime}(x)$
1	2	4
2	1	6

b) Determine the value of $f^{-1}\left(f^{-1}(1)\right)$.

Find $\tan \left(\sin ^{-1}\left(\frac{2}{3}\right)+\csc ^{-1} 3\right.$) (Do not rationalize.)

Given y, find $\frac{d y}{d x}$ evaluated at the indicated point.
a) $y=\left(\tan ^{-1} x\right)^{\cos x}$
Find $\left.\frac{d y}{d x}\right|_{x=\frac{\pi}{4}}$
b) $y=x^{x^{x}}$
Find $\left.\frac{d y}{d x}\right|_{x=2}$
c) $y=e^{x}+x^{e} \quad$ Find $\left.\frac{d y}{d x}\right|_{x=\ln 2}$

Extra Credit

\qquad
"A number has the property that its reciprocal is one less than the number."

Is this possible? If so, how many numbers satisfy the quote. If not, explain how you know that.

