Advanced Placement Calculus

Name _____

Copy original problem.

Per _____ Date ____

Convince me that you understand the concept!

No Calculators, please.

Chapter 5 Exam

Let f be the function defined by $f(x) = -2 + \ln x^2$.

(total 25 pts)

- a) For what real numbers is f defined?
- b) Find the zeros of f.
- c) Write an equation for the line tangent to the graph of f at x = 1.

II Given
$$f(x) = \sin^3 x + \sin^3 |x|$$
 (tot 25 pts)

- a) Rewrite f as a piecewise function.
- b) Prove f is continuous for all x.
- c) Using the definition of the derivative, find f'(0).

Given
$$f$$
 is a one-to-one continuous function with the values in the table:

a) Determine the value of the derivative of $f^{-1}(x)$ evaluated at $x = 2$.

$$\begin{bmatrix}
x & f(x) & f'(x) \\
1 & 2 & 4
\end{bmatrix}$$
(10 pts tot)

b) Determine the value of $f^{-1}(f^{-1}(1))$.

 \mathbf{IV}

Find $tan(sin^{-1}(\frac{2}{3}) + csc^{-1}3)$ (Do not rationalize.) (10 pts)

Given y, find $\frac{dy}{dx}$ evaluated at the indicated point.

(10 pts ea)

a)
$$y = (\tan^{-1} x)^{\cos x}$$
 Find $\frac{dy}{dx}\Big|_{x = \frac{\pi}{4}}$ b) $y = x^{x^x}$ Find $\frac{dy}{dx}\Big|_{x = 2}$

c)
$$y = e^x + x^e$$
 Find $\frac{dy}{dx}\Big|_{x = \ln 2}$

Extra Credit ------ 5 pts ------

"A number has the property that its reciprocal is one less than the number."