Advanced Placement Calculus

Ι

Per _____

Date

Name _____

Copy original problem. Convince me that you understand the concept! No Calculators, please.

Chapter 5 Exam

Of the twelve offered problems, you are required to do exactly 10. Given y, find $\frac{dy}{dx}$ Your final answers should be fully factored. (60 pts tot) b) $\left(\frac{x+e^x}{e^x}\right)^3$ a) $(2x^3-1)e^{3x}$ c) $\ln(\ln x)^2$ f) $\ln \frac{xe^x}{\sqrt{1+x}}$ d) $x^{\ln x}$ e) $\ln 3^x$

- i) 10^{x^2} g) $\ln \sqrt[3]{\cos x}$ h) x^x
- k) $3\sec^{-1}\left(\frac{3}{r}\right)$ j) $\ln x^{\ln x}$ 1) $\cos(\sin^{-1}x)$

Π Find the equation of the tangent line to the curve: $y = (x^2 - 15)^6$ at x = 4. (15 pts)

III Given:
$$f(x) = \frac{1}{2} \Big[x \sqrt{x^2 + a^2} + a^2 \ln (x + \sqrt{x^2 + a^2}) \Big]$$
, show that $f'(x) = \sqrt{x^2 + a^2}$ (10 pts)

IV Use the result of the chain rule on $f^{-1}(f(x)) = x$,

That is use: $(f^{-1})'(f(x)) = \frac{1}{f'(x)}$

to develop the derivative of $f(x) = \tan^{-1} x$.

Include the definitions of whatever variables which are needed in any proofs.

Extra Credit ------ 5 pts ------

Identify the two problems from section I which you didn't do as part of the required 10 and do them now for a total of 5 points.

(15 pts tot)