Advanced Placement Calculus

Copy original problem.
Convince me that you understand the concept!

No Calculators, please.

Chapter 5 Exam

I
Of the twelve offered problems, you are required to do exactly 10. Given y, find $\frac{d y}{d x}$ Your final answers should be fully factored.
(60 pts tot)
a) $\left(2 x^{3}-1\right) e^{3 x}$
b) $\left(\frac{x+e^{x}}{e^{x}}\right)^{3}$
c) $\quad \ln (\ln x)^{2}$
d) $x^{\ln x}$
e) $\ln 3^{x}$
f) $\quad \ln \frac{x e^{x}}{\sqrt{1+x}}$
g) $\ln \sqrt[3]{\cos x}$
h) x^{x}
i) $10^{x^{2}}$
j) $\ln x^{\ln x}$
k) $3 \sec ^{-1}\left(\frac{3}{x}\right)$

1) $\cos \left(\sin ^{-1} x\right)$

II
Find the equation of the tangent line to the curve: $y=\left(x^{2}-15\right)^{6}$ at $x=4$.
III
Given: $f(x)=\frac{1}{2}\left[x \sqrt{x^{2}+a^{2}}+a^{2} \ln \left(x+\sqrt{x^{2}+a^{2}}\right)\right]$, show that $f^{\prime}(x)=\sqrt{x^{2}+a^{2}}$

Use the result of the chain rule on $f^{-1}(f(x))=x$,

That is use: $\left(f^{-1}\right)^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}$
to develop the derivative of $f(x)=\tan ^{-1} x$.
Include the definitions of whatever variables which are needed in any proofs.

Extra Credit

Identify the two problems from section I which you didn't do as part of the required 10 and do them now for a total of 5 points.

