Advanced Placement Calculus

Copy original problem.
Convince $m e$ that you understand the concept!

Last Regular Exam

Given a line described: $y=x+1$ and a parabola described: $y=2 x^{2}$.
(25 pts tot)
a) Find the points of intersection of the line and the parabola.
b) Determine the area trapped between the given line and the given parabola.
c) For what values of k does the line $y=k(x+1)$ have no intersection with the parabola?

II
For the curve $y=f(x)$ it is given that $f^{\prime \prime}(x)=4 x-2$ and the curve passes through the point $(1,0)$.
a) Obtain the equation of this curve and show that it also passes through the origin.
b) Sketch the region bounded by this curve, its tangent at (1,0) and the axis $x=0$.
c) Find the equation of this tangent and calculate the area of the region.

III
Let R be the region in the first quadrant enclosed by the hyperbola $x^{2}-y^{2}=16$,
the x-axis and the line $x=6$.
a) Sketch R. Set up the integral expression in terms of a single variable for the area of R. Using your grapher, evaluate your formula.
b) Set up an integral expression in terms of x for the volume of the solid obtained when the region R is revolved about the x-axis. Using your grapher, evaluate your formula.
c) Set up a definite integral in terms of a y for the volume of the solid generated when R is revolved about the line $x=-2$. Using your grapher, evaluate your formula.

Extra Credit

 5 ptsA particle is initially at rest at the origin. The particle moves along the x axis with acceleration $a(t)=70+12 t-12 t^{2}$ where time t is positive. Find the particle's maximum displacement in the positive direction.

