Advanced Placement Calculus

Copy original problem.
Convince $m e$ that you understand the concept!

Name
Per Date \qquad

Chapter 10 Exam

\boldsymbol{R} is the region shown shaded. The curves involved are: $y=0, \quad 2 y=-x+3, \quad$ and $(x-1)^{2}+y^{2}=1$.
For each problem in this secion, reproduce the picture at the right and indicate any significant items for that specific problem (such as the typical cross section).
Integrals are to be fully simplified but do not actually
 evaluate any of the integrals in this section.
a) Set up the explicit integral for the area of \boldsymbol{R} using horizontal cross sections.
b) Set up the explicit which describes the surface area of the solid obtained when \boldsymbol{R} is rotated about the x-axis.
c) Set up the explicit integral for the volume of the solid obtained by rotating \boldsymbol{R} about the line $y=-1$. Use the "shell" method.
d) Set up the explicit integral for the volume of the solid obtained by rotating \boldsymbol{R} about the line $y=-1$. Do NOT use the "shell" method.
e) Let $c(x)$ be the vertical cross section of \boldsymbol{R}. Set up the explicit integral for the average value of $c(x)$.

Given the two polar equations: $r=4$ and $r=3 \cos 2 \theta$
a) Sketch both equations on the same polar axis.
b) Set up but do not actually evaluate the explicit integral for the arc length of one leaf of $r=3 \cos 2 \theta$.
c) Find the area of the region inside the circle but outside of the clover leaf without using a calculator.
d) Find the area of the region inside the circle but outside of the clover leaf using a calculator.
e) Reconcile the differences in your answers to parts c and d above.

I Given: $x(u)=\tan u$ and $y(u)=\sec u$.
Find $\frac{d y}{d x}$ as functions of u. (fully simplified, of course.)

Extra Credit

5 pts

Reconcider section III above. Find $\frac{d^{2} y}{d x^{2}}$ as functions of u. (fully simplified, of course.)

