Advanced Placement Calculus

Copy original problem. Convince *me* that **you** understand the concept! *No Calculators* !

I

Evaluate:

Chapter 10 Exam

a)
$$\int_{0}^{1} x \sqrt{1-x^4} dx$$
 b) $\int_{1}^{4} \sqrt{t} \ln t dt$ c) $\int_{a}^{1} \ln x dx$

II The base of solid *S* is the region $\{(x, y) | x^2 \le y \le 4\}$ (which means that $x^2 \le y$ and $y \le 4$). Cross sections perpendicular to the *y*-axis are semi-circles. Find the volume of *S*. (15 pts)

III Given the region bounded by the graphs of x = 1, x = 5, y = 0 and $y = \frac{1}{x}$. (20 pts)

Compare the approximations supplied by Simpson's Rule and the Trapazoidal Method when you use four sections..

IV Set up integras which represent the volumes of the following objects. Do not evaluate the integrals.

(10 pts ea)

(15 pts ea)

- a) The solid obtained by rotating the region bounded by the curves y = x and $y = x^2$ about the line x = 7.
- b) The solid obtained by rotating the region bounded by the curves y = x and $y = x^2$ about the line y = 7.

Extra Credit ------ 5 pts ------

There is a cone with the pointed end cut off leaving what is known as a frustum. The radius of the big end is R and the radius of the smaller end is r. The frustum has height h. On a standard cartesian axis mark the points (0, R) and (h, r). Connect them with a straight line. When this figure is revolved about the x-axis you will have the frustum. Find the volume of the frustum.

Per _____

Name _____

Date _____