A.P. Calculus

Copy original problem.
Convince $m e$ that you understand the concept!

No calculators.

Chapters $1 \rightarrow 4$ Exam

I
The definition of continuity is actually a collection of three "tests". For each of the (15 pts tot) following, draw a sketch which illustrates the situation when only the "item" listed fails.
a) Item 1
b) Item 2
c) Item 3

I Given $\frac{1+\sin x}{1-2 \sin x}=\frac{3}{4}$. Find $\cos 2 x$

凹 Given $f(x)=\left\{\begin{array}{cl}x^{2} & ; x \leq 1 \\ 2 x-1 & ; x>1\end{array}\right.$
(10 pts ea)
a) Prove $f(x)$ is continuous at $x=1$.
b) Prove $f^{\prime}(1)$ does or does not exist.

IV
Determine the following limits:
a) $\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+5}-3}{x-2}$
b) $\quad \lim _{x \rightarrow 0} \sqrt{1+\frac{1}{x}}-\sqrt{\frac{1}{x}}$
c) $\lim _{x \rightarrow 1}\left[\frac{1}{1-x^{3}}-\frac{1}{3(1-x)}\right]$
d) $\lim _{x \rightarrow 0}\left(\frac{\tan 3 x}{\tan 2 x}\right)$
e) $\lim _{x \rightarrow 0}\left(1+\frac{1-\cos x}{x}\right)^{\frac{\sin x}{x}}$
f) $\lim _{x \rightarrow 2} \frac{\sin (5 x-10)}{3 x-6}$
g) $\lim _{x \rightarrow 0}\left(\frac{\pi \sec \left(x+\frac{\pi}{3}\right)-\pi \sec \frac{\pi}{3}}{x}\right)$

V
Use the Intermediate Value Theorem to show that the graphs of $f(x)=x^{4}-5 x^{2}$ and

$$
\begin{equation*}
g(x)=2 x^{3}-4 x+6 \text { intersect between } x=3 \text { and } x=4 . \tag{15pts}
\end{equation*}
$$

Extra Credit

Two missiles speed directly toward each other, one at 9,000 MPH and one at $21,000 \mathrm{MPH}$. If they start at 1,317 miles apart, how far apart are they one minute before they collide?

