Advanced Placement Calculus

Copy original problem.
Convince $m e$ that you understand the concept!

No Calculators.

Chapters 1-4 Exam

I
Let $f(x)= \begin{cases}1+|x| & \text { if } x<0 \\ x^{3} & \text { if } 0 \leq x \leq 2 \\ 10-x & \text { if } x>2\end{cases}$
(15 pts tot)
a) Prove $f(x)$ is or is not continuous at $x=0$.
b) Prove $f(x)$ is or is not continuous at $x=2$
c) Prove $f^{\prime}(0)$ exists or does not exist.
d) Prove $f^{\prime}(2)$ exists or does not exist.

II
Given the function f defined by $f(x)=x^{3}-x^{2}-4 x+4$
(25 pts tot)
a) Find the zeros of f.
b) Write the equation of the line tangent to the graph of f at $x=-1$.
c) The point (a, b) is on the graph of f and the line tangent to the graph at (a, b) passes through the point $(0,-8)$ which is not on the graph of f. Find the values of a and b.
III
Verify with a careful and complete explanation that the equation $x^{5}-x^{2}+17=2 x$ has at least one solution.

IV Let $f(x)=\sqrt{x^{2}+9}$. Determine $g(x)$ so that $f(g(x))=x-\sqrt{x}$.

Limits. Be very sure your method is justified. (Hint: All limits exist)
a) $\lim _{x \rightarrow 0} \frac{\sin x^{2}}{(\sin x)^{2}}$
b) $\lim _{x \rightarrow 2} \frac{\sin (5 x-10)}{3 x-6}$
c) $\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h}$
d) $\lim _{x \rightarrow-\infty} \frac{\sqrt{2 x^{2}+1}}{x+2}$
e) $\lim _{x \rightarrow 4} \frac{x^{3}-64}{\sqrt{x}-2}$
f) $\lim _{x \rightarrow-\infty} \frac{2 x-20}{\sqrt{x^{2}-100}}$
g) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cos ^{2} x}$

Extra Credit

Determine $\tan \theta$ in terms of x.

