Advanced Placement Calculus

Copy original problem.
Convince $m e$ that you understand the concept!
No Calculators.

Chapter 1 Exam

I
Given: $f(x)=3 x^{4}+2 x^{3}$. Determine the x-intercept of the tangent line to $f(x)$ at $(-1,1)$.

Solve $\forall x \in \Re$. Graph the solution set on a well labeled numberline. Be especially sure that the reasons for your steps are very clear.
(10 pts ea)
a) $\quad\left|\frac{x-2}{x+2}\right|>1$
b) $\frac{5}{1-x}<3$
c) $\quad|2 x+|x-3||<2$
\pm Using the definition of the derivative which uses $h \rightarrow 0$, find $f^{\prime}(x)$ given $f(x)=\frac{1}{2 x+1}$.
IV Given: $f(x)=|2 x-3|-|4-x|$
a) Graph the solution to $f(x) \geq 8$.
b) Rewrite $f(x)$ as a piece-wise function.
c) Sketch the graph of $f(x)$ on a standard cartesian axis.

V Find the following limits
a) $\lim _{x \rightarrow 3} \frac{\frac{1}{x}+\frac{1}{2}}{x-2}$
b) $\lim _{x \rightarrow-3} \frac{x^{3}+27}{x+3}$
c) $\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x}$
d) $\lim _{x \rightarrow 0} \frac{x^{2}+\frac{1}{x}}{x^{2}-\frac{1}{x}}$
e) $\quad \lim _{x \rightarrow 0}(1-3 x)^{\frac{2}{x}}$

Extra Credit

 5 ptsConfirm that: $\quad \frac{1}{2}=\frac{1}{3}+\frac{1}{6}$ and $\frac{1}{3}=\frac{1}{4}+\frac{1}{12}$.

Represent these three fractions in a similar manner: $\frac{1}{4}, \frac{1}{5}, \frac{1}{6}$

