Name

Advanced Placement Calculus Copy original problem. Convince *me* that **you** understand the concept! *No Calculators*.

Chapter 1 Exam

Given: $f(x) = 3x^4 + 2x^3$. Determine the *x*-intercept of the tangent line to f(x) at (-1,1). (10 pts)

Solve $\forall x \in \Re$. Graph the solution set on a *well labeled* numberline. Be especially sure that the reasons for your steps are very clear. (10 pts ea)

a)
$$\left|\frac{x-2}{x+2}\right| > 1$$
 b) $\frac{5}{1-x} < 3$ c) $\left|2x+|x-3|\right| < 2$

III Using the *definition of the derivative* which uses $h \to 0$, find f'(x) given $f(x) = \frac{1}{2x+1}$. (10 pts)

IV

Ι

Π

Given: f(x) = |2x-3| - |4-x| (25 pts tot)

- a) Graph the solution to $f(x) \ge 8$.
- b) Rewrite f(x) as a piece-wise function.
- c) Sketch the graph of f(x) on a standard cartesian axis.

Find the following limits

a) $\lim_{x \to 3} \frac{\frac{1}{x} + \frac{1}{2}}{x - 2}$ b) $\lim_{x \to -3} \frac{x^3 + 27}{x + 3}$ c) $\lim_{x \to 0} \frac{\sqrt{x + 4} - 2}{x}$

d)
$$\lim_{x \to 0} \frac{x^2 + \frac{1}{x}}{x^2 - \frac{1}{x}}$$
 e) $\lim_{x \to 0} (1 - 3x)^{\frac{2}{x}}$

Extra Credit ------ 5 pts ------

Confirm that: $\frac{1}{2} = \frac{1}{3} + \frac{1}{6}$ and $\frac{1}{3} = \frac{1}{4} + \frac{1}{12}$.

Represent these three fractions in a similar manner: $\frac{1}{4}$, $\frac{1}{5}$, $\frac{1}{6}$

(5 pts ea)

Per

Date