Honors Analysis

Name
Copy the original problem.
Convince me that you understand the concept.
Per \qquad Date

No calculators, of course.

LAST REGULAR EXAM

I Given: $f(x)=\frac{x}{e^{x}} \quad ; \quad-2 \leq x \leq 3$
a) Find $f^{\prime}(x)$ in fully simplified form.
b) Find the interval(s) where $f(x)$ is increasing.
c) Find and identify the coordinates of all extrema.
d) Find the interval(s) where $f(x)$ is concave down.
e) What is the range of $f(x)$?
f) Sketch $f(x)$.

II Given $f(x)$, find $f^{\prime}(x)$:
a) $f(x)=e^{\cos x}$
b) $\quad f(x)=x^{e^{x}}$
c) $\quad f(x)=\ln e^{5 x}$
d) $\quad f(x)=\ln \left(\frac{\sin x}{\cos x}\right)$

III Find the x-intercept of the line tangent to $f(x)=e^{x}$ which has slope 2 .

IV Given $y=\cos x+2$ graphed on the right.
Find the area trapped below y, above
the x-axis and between $x=\frac{\pi}{3}$ and $x=\frac{4 \pi}{3}$.

Jasper says, "Anything to the zero power is 1. "
Jed says, "Not so!". Jed writes $y=x^{\frac{1}{\ln x}}$ on the chalkboard and says, "As x gets large, $\ln x$ also gets bigger so $\frac{1}{\ln x}$ is certainly positive and is getting closer to zero." He continued, "So we can
say $\lim _{x \rightarrow \infty} x^{\frac{1}{\ln x}}$ is an example of ∞^{0} which is not 1 ."
Explain what Jed meant and show that he was correct.

Extra Credit

How old were you at thirty-four minutes fifty-six seconds past noon on July 8, 1990? What was special about that particular time?

