Honors Analysis

Name
Copy the original problem.
Convince me that you understand the concept.
Per \qquad Date

LAST REGULAR EXAM

I Given: $f(x)=\frac{x}{\ln x}$
a) Find the domain of $f(x)$
b) Find the interval(s) where $f(x)$ is increasing.
c) Find and identify the coordinates of all extrema.
d) Find the interval(s) where $f(x)$ is concave down.
e) What is the range of $f(x)$.
f) Based on sections "a" through "d", sketch $f(x)$.

II Given $f(x)$, find $f^{\prime}(x)$:
(5 pts ea)
a) $\quad f(x)=\sin e^{-2 x}$
b) $\quad f(x)=\ln (\tan x)$
c) $\quad f(x)=e^{x^{e}}$
d) $\quad f(x)=\frac{1}{\ln x}$

II Find the integral :
(5 pts ea)
a) $\int \frac{(2 x+3)^{3}}{x} d x$
b) $\int e^{-k x} d x$

IV Simplify using the "Mumaugh" tables:
(5 pts ea)
a) $\ln 40$
b) $\log _{3} 8$
c) $\ln (2.4)$
d) $\left(\log _{5} 2\right)\left(\log _{2} 25\right)$
$\mathbf{V} \quad$ Given $e^{y}=x$. Find the first derivative of y with respect to x.

VI
Find the x-intercept of the line tangent to $f(x)=\ln x$ which has slope e^{2}.

Extra Credit

Given: $f(x)=\ln \left(\cos ^{2} x-\sin ^{2} x\right)$, find $f^{\prime}\left(\frac{\pi}{8}\right)$.

