Honors Analysis

Copy the original problem.

Convince *me* that **you** understand the concept. No calculators, of course.

Name _____

Per _____ Date _____

LAST REGULAR EXAM

$$I \qquad \text{Given: } f(x) = \frac{x}{\ln x} \qquad (\text{tot 30 pts})$$
a) Find the domain of $f(x)$
b) Find the interval(s) where $f(x)$ is increasing.
c) Find and identify the *coordinates* of all extrema.
d) Find the interval(s) where $f(x)$ is concave down.
e) What is the range of $f(x)$.
f) Based on sections "a" through "d", sketch $f(x)$.
II Given $f(x)$, find $f'(x)$:
(5 pts ea)
a) $f(x) = \sin e^{-2x}$
b) $f(x) = \ln(\tan x)$
c) $f(x) = e^{x^{e}}$
d) $f(x) = \ln(\tan x)$
c) $f(x) = e^{x^{e}}$
d) $f(x) = \frac{1}{\ln x}$
III Find the integral:
(5 pts ea)
a) $\int \frac{(2x+3)^{3}}{x} dx$
b) $\int e^{-kx} dx$
IV Simplify using the "Mumaugh" tables:
(5 pts ea)
a) $\ln 40$
b) $\log_{3} 8$
c) $\ln (2.4)$
d) $(\log_{5} 2)(\log_{2} 25)$
V Given $e^{t} = x$. Find the first derivative of y with respect to x.
(10 pts)

Extra Credit 5 pts

Given: $f(x) = \ln(\cos^2 x - \sin^2 x)$, find $f'\left(\frac{\pi}{8}\right)$.