Honors Analysis

Copy original problem.
Convince $m e$ that you understand the concept!

No decimal fractions.

Chapter 4 Mechanical Exam

I
The curve on the right is called the folium of Decartes and has the equation: $x^{3}+y^{3}=3 x y$. The curve was originally proposed by Rene Decartes as a challenge to Pierre Fermat to find its tangent line.
The curve has as a tilted asymptote $y=-x-1$.
Per Date
a) Find that tangent line at $(2 / 3,4 / 3)$. Write the equation of the line in standard form, ie. without fractions and equal to zero.
b) Find the coordinate where the tangent line in part (a) intersects with the asymptote.

I Given $f(x)=\frac{1}{1-x}$.
(tot 30 pts)
a) Find the domain and range of $f(x)$.
b) Determine the x-intercept of the tangent line to $f(x)$ at $x=3$.
c) Find the equation(s) of all tangent lines to $f(x)$ which are perpendicular to: $x+4 y-2=0$

Given $f(x)$. Determine $f^{\prime}(x)$. Do not simplify your answers. (for example, leave negative exponents as negative exponents, do not combine constants, etc.) Basically, I am looking for evidence that you have used the proper formula in the proper order at the proper time.

$$
\begin{equation*}
f(x)=\frac{(4 x-3 \sqrt{x})^{3} \sqrt{3 x^{2}+2 x+1}}{3 x^{2} \sqrt{2 x^{2}-3 x+1}} \tag{15ps}
\end{equation*}
$$

Newton's Method. Explain how "Newton's Method for finding roots" of equations works. Do not use specific examples. (You are allowed to use coordinates like $\left(x_{1}, f\left(x_{1}\right)\right)$. Conclude your explanation with "Newton's recursion formula".

Extra Credit

 5 ptsReconsider the folium of Decartes in section I. What is the shortest distance from the origin to the line tangent to the folium at $(2 / 3,4 / 3)$?

