Honors Analysis

Name
Copy the original problem.
Convince me that you understand the concept.
Per \qquad Date

CHAPTER \# 4 Mechanical

I Find and identify the coordinates of all extrema for each of the following. Do NOT draw the graph of the function. Each extrema must be labeled as "relative" or "absolute" in addition to Maximum or Minimum. Remember that end points yield extrema and that you must justify (explain how you know) they are what you say they are.
a) $A(x)=2 x^{3}-3 x^{2}-12 x+13 \quad x \in[-2,3]$
b) $B(x)=-\cos x \quad x \in\left[\frac{-\pi}{2}, \frac{11 \pi}{6}\right]$
c) $\quad C(x)=(a+x) \sqrt{a^{2}-x^{2}}$
" a " is a positive constant
(hint: What are the domain restrictions on the function?)

II Given: $x^{3}+3 x y+y^{3}=1$
Find the equation of the line tangent to the curve at (2, - 1)

III Given $f(x)$, determine $f^{\prime}(x)$. Do not simplify your answers. (for example, leave negative exponents exponents.) Basically, I am looking for evidence that you have used the proper formula at the proper time.
(10 pts ea)
a) $\frac{(2 x+1)^{3}\left(4-x^{2}\right)^{4}}{\left(8 x^{3}-3\right)^{2}}$
b) $\left((3 x-2)^{\frac{2}{3}}(4-x)^{\frac{1}{3}}\right) \sqrt{3 x^{3}-1}$

Extra Credit
Determine the coordinates of all points of inflection for the functions given in Section I a and I b. Show appropriate number lines as justification.

