Convince $m e$ that you understand the concept!

## Chapter 4 Applications Exam

Let $f(x)=12-x^{2}$ for $x \geq 0$ and $f(x) \geq 0$.
a) The line tangent to the graph of $f(x)$ at the point $(k, f(k))$ intercepts the $x$-axis at $x=4$. Draw a useful sketch and label the points stated and draw the tangent line. Determine the value of $k$.
b) An isosceles triangle whose base is the interval from $(0,0)$ to $(c, 0)$ has its vertex on the graph of $f(x)$. Draw a new picture which includes the triangle. Be sure all significant points are clearly labled. For what values of $c$ does the triangle have maximum area? Justify, of course.

A tank with a rectangular base and rectangular sides is to be open at the top. It is to be constructed so that its width is 4 meters and its volume is 36 cubic meters. If building the tank costs $\$ 10$ per square meter for the base and $\$ 5$ per square meter for the sides, what is the cost of the least expensive tank?
(30 pts)


1 Consider the figure on the right composed of two squares and a circle. The circle has center $O . r$ is the radius of the circle and is lengthening at 6 units per second. The sides of the squares lengthen to maintain the same general shape as the figure.
(30 pts tot)
a) Explain how you know that $\overline{O C}=\overline{O B}$.
b) How fast is the area of the circle changing when $r=3$ ?
c) How fast is the area of the large square changing when $r=4$ ?
d) How fast is the area of the small square changing when $r=5$ ?
e) How many times faster is the rate of change of the perimeter of
 the outside square as compared to the perimeter of the inside square when $r=6$ ?
f) Let area $p$ be the area outside of the circle and inside the large square. Let area $q$ be the area outside of the inside square and inside the circle. What is the ratio of the area $p$ to the area $q$. Round your answer to 3 decimal places.

Let triangle $A B C$ be a right triangle with a fixed hypotenuse $=1$ meter. If $\theta$ is increasing at the rate of $4 \pi$ radians per minute, find the rate at which the side " $a$ " is increasing when $\theta=\pi / 3$.


A group of hikers leave the foot of a mountain at 7:00 A.M. and hikes to the top arriving by 2:00 P.M. They spend the night on the mountain and hike back down the next morning, again leaving at 7:00 A.M. but arriving back at base camp at exactly at noon. Assuming that only one trail exists, did the hikers pass any point at the same time on both days? Explain.

