Honors Analysis

Copy original problem.
Convince $m e$ that you understand the concept!

Chapter 4 Applications Exam

You may use a calculator on this exam.

A circle is inscribed in a square as shown in the figure. The circumference of the circle is increasing at a constant rate of six inches per second. As the circle expands, the square expands to maintain the condition of tangency.
a) Find the rate at which the perimeter of the square is increasing. Indicate units of measure.

$$
\begin{aligned}
& A_{\text {circle }}=\pi r^{2} \\
& C_{\text {circle }}=2 \pi r
\end{aligned}
$$

b) At the instant when the area of the circle is 25π square inches, find the rate of increase in the area enclosed between the circle and the square. Indicate units of measure.

Per \qquad Date \qquad

A region is in the shape of a wedge of a circle as shown. If the total area of the wedge is 4π, what should θ be to minimize the perimeter? Verify using $f^{\prime \prime}$ test.

$$
\begin{aligned}
\text { Area }_{\text {sector }} & =\frac{1}{2} r^{2} \theta \\
\text { Perimete }_{\text {sector }} & =2 r+r \theta
\end{aligned}
$$

1 A rectangle has two of its vertexes on the x - axis and the other two above the x - axis and on the graph of the parabola: $y=25-x^{2}$. See the picture on the right.
a) If the coordinates of one of the vertexes is (3,16), what is the area and perimeter of the rectangle?
b) What is the area and perimeter of the rectangle which has largest area ?
c) What is the area and perimeter of the rectangle which has largest perimeter?
d) Are you surprised by the similarity of the answers of parts b and c ?

Extra Credit

 5 ptsIn a forest a predator feeds on prey, and the predator population at any time is a function of the number of prey in the forest at that time. Suppose that when there are x prey in the forest, the predator population is y and $y=\frac{1}{6} x^{2}+90$. Furthermore, if t weeks have elapsed since the end of the hunting season, $x=7 t+85$. At what rate is the population of the predator growing 8 weeks after the close of the hunting season? Do not express y in terms of t, but use the chain rule.

