Honors Analysis

Copy original problem.

Convince me that you understand the concept!

No Calculators.

Ι

Π

III

Chapter 4 – Mechanical Exam

Find and identify (including "relative" or "absolute") the coordinates of all extrema for each of the following. Remember to consider the domain limits. Do not draw the graph of the function. All conclusions must be properly justified. Be very sure the reader understands your logic! (25 pts ea)

a)
$$f(x) = 2x^3 - 4x^2$$
 $x \in [-2,3]$ b) $f(x) = 2\cos x (\sin x - 1)$ $x \in [-\frac{\pi}{2}, \frac{3\pi}{2}]$

Given: $x^4 + 2x^2y + y^2 = 4$. Find the equations of the tangent lines at x = 1(20 pts)

Given the	Given the following table with function values:		2	3
1	C			
$(fg)'\Big _{x=2}$	translates to: "the derivative of the	$\overline{f'(x)}$	12	12
	product of f and g evaluated at $x = 2$ "	$\overline{g(x)}$	3	2
Evaluate		$\overline{g'(x)}$	-2	-3

Evaluate:

a)
$$(fg)'\Big|_{x=2}$$
 b) $\left(\frac{f}{f+g}\right)'\Big|_{x=3}$ c) $(f(g))'\Big|_{x=3}$

IV Given:
$$f(x) = \frac{2(9x-2)}{135} \sqrt{(3x+1)^3}$$
. Find $f'(x)$ (simplify completely). (10 pts)

Extra Credit ------ 5 pts ------

Reconsider the equation given in II above. Find any and all coordinates where the tangent line would be horizontal.

Per _____ Date _____

Name _____

(20 pts tot)