Honors Analysis

Copy original problem.
Convince $m e$ that you understand the concept!

Chapter 3 Exam

I Given $f(x)$, find $f^{\prime}(x)$:
\qquad Date \qquad
(5 pts ea)
a) $\left(4 x^{3}-5 x\right)^{2}$
b) $x^{\pi}+3$
c) $4^{2}-1$

IU Using the "definition of the derivative" which yields a function, find $f^{\prime}(x): f(x)=(2 x-3)^{2}$

II Given $f(x)=\left\{\begin{array}{cc}x^{2} & ; x \leq 1 \\ 2 x-1 & ; x>1\end{array}\right.$
a) Prove $f(x)$ is or is not continuous at $x=1$.
b) Prove $f^{\prime}(1)$ does or does not exist.

Given: $f(x)=x^{4}-4 x^{3}$
(30 pts tot)
IV
a) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$. Draw appropriate "number line" graphs.
b) Find the coordinates of the critical points. Identify them as max, min or P.I.
c) Determine the coordinates of any PI which are NOT critical values.
d) Specifically state the interval(s) where $f(x)$ is concave up.
e) Specifically state the interval(s) where $f(x)$ is decreasing.
f) Sketch the graph of $f(x)$.

Determine the following limits:
a) $\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+5}-3}{x-2}$
b) $\quad \lim _{x \rightarrow 0} \sqrt{1+\frac{1}{x}}-\sqrt{\frac{1}{x}}$
c) $\lim _{x \rightarrow 1}\left[\frac{1}{1-x^{3}}-\frac{1}{3(1-x)}\right]$

Extra Credit

Given $f(x)=a x^{3}+b x^{2}$.
Determine a and b so the graph of $f(x)$ will have a point of inflection at (1,2).

