Honors Analysis
Copy original problem.
Convince $m e$ that you understand the concept!
No Calculators.

Chapter 3 Exam

I Definition of the derivative:
(10 pts ea)
a) Using the definition of the derivative which yields a function, find $f^{\prime}(x)$ given $f(x)=\frac{1}{x+1}$.
b) Using the definition of the derivative which yields a number, find $f^{\prime}(2)$ given $f(x)=\frac{1}{x+1}$.

I Given $f(x)=3(x-1)^{2}$. Find the equation of the tangent line to $f(x)$ at $x=2$.

II Find the following limits:
a) $\lim _{x \rightarrow 3} \frac{x^{2}-3 x}{x^{2}-4 x+3}$
b) $\quad \lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}$

IV
Determine \boldsymbol{a} and \boldsymbol{b} so $f(x)$ is continuous in the interval $[0,3]$.
(tot 25 pts$)$
given: $\quad f(x)=\left\{\begin{array}{cc}x^{2} & \text { if } 0 \leq x \leq 1 \\ \mathrm{a} x+3 & \text { if } 1<x<2 \\ x^{2}-\mathrm{b} & \text { if } 2 \leq x \leq 3\end{array}\right.$

Given $f(x)=x(x-3)^{2} \quad D_{f} \quad x \quad \varepsilon[-1,4]$.
(tot 35 pts)
a) Determine the coordinates of all extrema. Identify as global or local. Justify!
b) Determine coordinates of all points of inflection.
c) Sketch $f(x)$.

Extra Credit \qquad 5 pts

Jack can run around a circular track in forty seconds. Jill, running in the opposite direction, meets Jack every fifteen seconds. What is Jill's time to run around the track, expressed in seconds?

