Copy the original problem.
Convince me that you understand the concept.
Per \qquad Date

I Given: $f(x)=\left\{\begin{array}{cc}x+1 & \text { if } \mathrm{x}<1 \\ 3-(\mathrm{x}-2)^{2} & \text { if } \mathrm{x} \geq 1\end{array}\right.$
a) Prove $f(x)$ is continuous at $x=1$.
b) Prove $f^{\prime}(1)$ does not exist.

II Using the second definition of the derivative ($\lim _{h \rightarrow 0}$ method),find $f^{\prime}(x)$ when $f(x)=x+\frac{1}{x}$ (tot 20 pts)

II Given: $f(x)=x^{4}-4 x^{3}+10$
a) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
b) Draw and properly label areas of interest on number lines for each $f^{\prime}(x)$ and $f^{\prime \prime \prime}(x)$.
c) Find the coordinates of the critical points of $f(x)$. Identify them as max, min or PI. Justify your responses.
d) Are there any PI which are not at critical values of x ? Where?
e) Determine and state the interval(s) where:

1) $\quad f(x)$ is increasing.
2) $\quad f(x)$ is concave up.
f) Sketch $f(x)$.

IV Determine the following limits:
a) $\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+9}-3}{x^{2}}$
b) $\lim _{x \rightarrow 0}\left(\frac{3+2 x}{x+5 x^{2}}-\frac{3}{x}\right)$
c) $\quad \lim _{x \rightarrow 1} \frac{x-1}{\sqrt[3]{x}-1}$
d) $\lim _{x \rightarrow-1} \frac{x+1}{x^{2}+1}$

Given $f(x)=|x+1| \operatorname{sgn}(x-2)$. Sketch $f(x)$. Prove $f(x)$ is or is not continuous at $x=2$.

