Honors Analysis		Name		
Copy the original problem.		Per	Date	
Convinc No Cal	ce <i>me</i> that you understand the concept.		R #3	
110 Cui				
Ι	Given: $f(x) = \begin{cases} x+1 & \text{if } x < 1 \\ 3 - (x-2)^2 & \text{if } x \ge 1 \end{cases}$			(tot 20 pts)
a)	Prove $f(x)$ is continuous at $x = 1$.	b)	Prove $f'(1)$ does not exist.	
II	Using the second definition of the der	rivative ($\lim_{h \to 0}$	f_0^1 method), find $f'(x)$ when	$f(x) = x + \frac{1}{x}$ (tot 20 pts)
III	Given: $f(x) = x^4 - 4x^3 + 10$			(tot 40 pts)
a)	Find $f'(x)$ and $f''(x)$.			
b)	Draw and properly label areas of interest on number lines for each $f'(x)$ and $f''(x)$.			
c)	Find the coordinates of the critical points of $f(x)$. Identify them as max, min or PI. Justify your responses.			
d)	Are there any PI which are not at critic	al values of	x? Where?	
e)	Determine and state the interval(s) whe	ere:		
1	1) $f(x)$ is increasing. 2)	f(x) is	concave up.	
f)	Sketch $f(x)$.			
IV	Determine the following limits:			(5 pts ea)
a)	$\lim_{x \to 0} \frac{\sqrt{x^2 + 9} - 3}{x^2}$	b)	$\lim_{x \to 0} \left(\frac{3 + 2x}{x + 5x^2} - \frac{3}{x} \right)$	
c)	$\lim_{x \to 1} \frac{x-1}{\sqrt[3]{x-1}}$	d)	$\lim_{x \to -1} \frac{x+1}{x^2 + 1}$	
EXTRA	CREDIT		= 5 pts	

Given $f(x) = |x+1| \operatorname{sgn}(x-2)$. Sketch f(x). Prove f(x) is or is not continuous at x = 2.