Honors Analysis

Name
Copy the original problem.
Convince me that you understand the concept.
Per \qquad Date

No Calculators, of course.
CHAPTER \#1

I State the Domain only for each of the following:
a) $\quad A(x)=\frac{\sqrt{x+3}}{x^{2}+x}$
b) $\quad B(x)=\sqrt{\frac{1}{x}-x}$
c) $C(x)=\frac{4(x+1)}{(x-1)(x+1)}$
d) $\quad D(x)=\sqrt{-(x-3)(x+1)}$

II For each of the following, re-define as a "piece-meal" function. Sketch a graph.
a) $A(x)=(\operatorname{Sgn}(\mathrm{x}))^{2}-x+1$
b) $B(x)=|x+1| \operatorname{Sgn}(\mathrm{x}-2)$
c) $C(x)=|x+1|+|x-1|$

II Let $[\mathrm{x}]$ mean the Greatest Integer Function. Re-define the following as a "piece-meal" function.
Graph the function given the domain: $\mathrm{D}_{\mathrm{A}}-2 \leq \mathrm{x} \leq 2$.
(10 pts)

$$
A(x)=2^{[x]}+1
$$

IV Given point A with coordinates (2, 2), find the point B (coordinates (x, y)) such that the slope of the line $A B$ is 2 and the distance from point A to point B is 2 .
$\mathbf{V} \quad$ Given: $\quad F(x)=\frac{2 x+3}{5 x-2}$ and $G(x)=\frac{2 x+3}{x}$
A) Using the "inverse method", find the range of $F(x)$.
B) Using the "inverse method", find the range of $G(x)$.
C) Prove $F(x)$ is or is not a 1-to-1 function. Specifically state your conclusion.
D) Find the domain of $H(x)$ given: $H(x)=F(G(x))$.
E) Find the domain of $J(x)$ given: $J(x)=\sqrt{\frac{1}{F(x)}+\frac{1}{G(x)}}$.

Sketch the graph of: $\quad y=\left|\frac{x^{3}-x^{2}-2 x+2}{x-1}\right|$. Consider x values: $-3 \leq \mathrm{x} \leq 3$

